cGAS–STING, an important signaling pathway in diseases and their therapy

Qijie Li1, Ping Wu2, Qiujing Du1, Ullah Hanif1, Hongbo Hu3(), Ka Li1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (4) : e511. DOI: 10.1002/mco2.511
REVIEW

cGAS–STING, an important signaling pathway in diseases and their therapy

  • Qijie Li1, Ping Wu2, Qiujing Du1, Ullah Hanif1, Hongbo Hu3(), Ka Li1()
Author information +
History +

Abstract

Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)–stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS–STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS–STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS–STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS–STING. We will also focus on the important roles of cGAS–STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS–STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS–STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS–STING, provide a theoretical basis for further exploration of the roles of cGAS–STING in diseases, and open up new strategies for targeting cGAS–STING as a promising therapeutic intervention in multiple diseases.

Keywords

agonist / cancer immunotherapy / cGAS–STING / inflammatory disease / inhibitor / signal transduction regulation / triggered DNA

Cite this article

Download citation ▾
Qijie Li, Ping Wu, Qiujing Du, Ullah Hanif, Hongbo Hu, Ka Li. cGAS–STING, an important signaling pathway in diseases and their therapy. MedComm, 2024, 5(4): e511 https://doi.org/10.1002/mco2.511

References

1 PJ Kranzusch, SC Wilson, SYL Amy, JM Berger, RE Vance. Ancient origin of cGAS-STING reveals mechanism of universal 2',3' cGAMP signaling. Mol Cell. 2015;59(6):891-903.
2 L Sun, J Wu, F Du, X Chen, ZJ Chen. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339(6121):786-791.
3 Z Ma, SR Jacobs, JA West, C Stopford, B Damania. Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proc Natl Acad Sci USA. 2015;112(31):4306-4315.
4 Q Chen, LJ Sun, ZJJ Chen. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17(10):1142-1149.
5 X Zhang, HP Shi, JX Wu, et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell. 2013;51(2):226-235.
6 DS Wan, W Jiang, JW Hao. Research advances in how the cGAS-STING pathway controls the cellular inflammatory response. Front Immunol. 2020;11:615.
7 Z Ma, B Damania. The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe. 2016;19(2):150-158.
8 RY Zhou, XL Xie, XB Li, et al. The triggers of the cGAS-STING pathway and the connection with inflammatory and autoimmune diseases. Infect Genet Evol. 2020;77:104094.
9 X Wu, FH Wu, X Wang, et al. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. 2014;42(13):8243-8257.
10 H Cai, JL Imler. cGAS-STING: insight on the evolution of a primordial antiviral signaling cassette. Fac Rev. 2021;10:54.
11 SR Margolis, SC Wilson, RE Vance. Evolutionary origins of cGAS-STING signaling. Trends Immunol. 2017;38(10):733-743.
12 X Gui, H Yang, T Li, et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature. 2019;567(7747):262-266.
13 DJ Patel, Y Yu, W Xie. cGAMP-activated cGAS–STING signaling: its bacterial origins and evolutionary adaptation by metazoans. Nat Struct Mol Biol. 2023;30(3):245-260.
14 L Unterholzner. Innate immune sensing by cGAS-STING in animals reveals unexpected messengers. Cell. 2023;186(15):3145-3147.
15 C Shu, GH Yi, T Watts, CC Kao, PW Li. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat Struct Mol Biol. 2012;19(7):722-724.
16 BR Morehouse, AA Govande, A Millman, et al. STING cyclic dinucleotide sensing originated in bacteria. Nature. 2020;586(7829):429-433.
17 GJ Shang, CG Zhang, ZJJ Chen, XC Bai, XW Zhang. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature. 2019;567(7748):389-393.
18 PJ Kranzusch. cGAS and CD-NTase enzymes: structure, mechanism, and evolution. Curr Opin Struc Biol. 2019;59:178-187.
19 D Cohen, S Melamed, A Millman, et al. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature. 2019;574(7780):691-695.
20 GB Severin, MS Ramliden, LA Hawver, et al. Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. Proc Natl Acad Sci USA. 2018;115(26):6048-6055.
21 AM Burroughs, L Aravind. Identification of uncharacterized components of prokaryotic immune and their diverse reformulations. J Bacteriol. 2020;202(24):e00365-20.
22 SY Ouyang, XQ Song, YY Wang, et al. Structural Analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity. 2012;36(6):1073-1086.
23 L Tong. How to diSARM the executioner of axon degeneration. Nat Struct Mol Biol. 2021;28(1):10-12.
24 CG Zhang, GJ Shang, X Gui, XW Zhang, XC Bai, ZJJ Chen. Structural basis of STING binding with and phosphorylation by TBK1. Nature. 2019;567(7748):394-398.
25 A Ablasser, ZJJ Chen. cGAS in action: expanding roles in immunity and inflammation. Science. 2019;363(6431):eaat8657.
26 AT Whiteley, JB Eaglesham, CCD Mann, et al. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature. 2019;567(7747):194-199.
27 QZ Ye, RK Lau, IT Mathews, et al. HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. Mol Cell. 2020;77(4):709-722.
28 LA Samaniego, L Neiderhiser, NA DeLuca. Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol. 1998;72(4):3307-3320.
29 JW Schoggins, DA MacDuff, N Imanaka, et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature. 2014;505(7485):691-695.
30 D Anghelina, E Lam, E Falck-Pedersen. Diminished innate antiviral response to adenovirus vectors in cGAS/STING-deficient mice minimally impacts adaptive immunity. J Virol. 2016;90(13):5915-5927.
31 XD Li, JX Wu, DX Gao, H Wang, LJ Sun, ZJJ Chen. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013;341(6152):1390-1394.
32 J Paijo, M Doring, J Spanier, et al. cGAS senses human cytomegalovirus and induces type I interferon responses in human monocyte-derived cells. PLoS Pathog. 2016;12(4):e1005546.
33 CWJ Lio, B McDonald, M Takahashi, et al. cGAS-STING signaling regulates initial innate control of cytomegalovirus infection. J Virol. 2016;90(17):7789-7797.
34 DX Gao, JX Wu, YT Wu, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science. 2013;341(6148):903-906.
35 X Lahaye, M Gentili, A Silvin, et al. NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation. Cell. 2018;175(2):488-501.
36 ZS Liu, H Cai, W Xue, et al. G3BP1 promotes DNA binding and activation of cGAS. Nat Immunol. 2019;20(1):18-28.
37 H Lian, J Wei, R Zang, et al. ZCCHC3 is a co-sensor of cGAS for dsDNA recognition in innate immune response. Nat Commun. 2018;9(1):3349.
38 RO Watson, SL Bell, DA MacDuff, et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe. 2015;17(6):811-819.
39 AC Collins, HC Cai, T Li, et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe. 2015;17(6):820-828.
40 R Wassermann, MF Gulen, C Sala, et al. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe. 2015;17(6):799-810.
41 YG Zhang, L Yeruva, A Marinov, et al. The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-beta during Chlamydia trachomatis infection. J Immunol. 2014;193(5):2394-2404.
42 K Hansen. Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway. Embo J. 2014;33(15):1654-1666.
43 KM Storek, NA Gertsvolf, MB Ohlson, DM Monack. cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella Infection. J Immunol. 2015;194(7):3236-3245.
44 WA Andrade, S Agarwal, S Mo, et al. Type I interferon induction by Neisseria gonorrhoeae: dual requirement of cyclic GMP-AMP synthase and Toll-like receptor 4. Cell Rep. 2016;15(11):2438-2448.
45 U Koppe, K Hogner, JM Doehn, et al. Streptococcus pneumoniae stimulates a STING- and IFN regulatory factor 3-dependent type I IFN production in macrophages, which regulates RANTES production in macrophages, cocultured alveolar epithelial cells, and mouse lungs. J Immunol. 2012;188(2):811-817.
46 N Gratz, H Hartweger, U Matt, et al. Type I interferon production induced by Streptococcus pyogenes-derived nucleic acids is required for host protection. PLoS Pathog. 2011;7(5):e1001345.
47 CM Gries, EL Bruger, DE Moormeier, TD Scherr, CM Waters, T Kielian. Cyclic di-AMP released from Staphylococcus aureus biofilm induces a macrophage type I interferon response. Infect Immun. 2016;84(12):3564-3574.
48 DY Zhu, LJ Wang, GJ Shang, et al. Structural biochemistry of a Vibrio cholerae dinucleotide cyclase reveals cyclase activity regulation by folates. Mol Cell. 2014;55(6):931-937.
49 BW Davies, RW Bogard, TS Young, JJ Mekalanos. Coordinated regulation of accessory genetic elements produces cyclic dinucleotides for V. cholerae virulence. Cell. 2012;149(2):358-370.
50 WO Hahn, NS Butler, SE Lindner, et al. cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses. Jci Insight. 2018;3(2):e94142.
51 YF Sun, Y Cheng. STING or sting: cGAS-STING-mediated immune response to protozoan parasites. Trends Parasitol. 2020;36(9):773-784.
52 KP Hopfner, V Hornung. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21(9):501-521.
53 N Gehrke, C Mertens, T Zillinger, et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity. 2013;39(3):482-495.
54 K Kawane, H Fukuyama, G Kondoh, et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science. 2001;292(5521):1546-1549.
55 MAM Reijns, B Rabe, RE Rigby, et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell. 2012;149(5):1008-1022.
56 E Franzolin, G Pontarin, C Rampazzo, et al. The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc Natl Acad Sci USA. 2013;110(35):14272-14277.
57 S Kretschmer, C Wolf, N Konig, et al. SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis. 2015;74(3):e17.
58 JM Diamond, C Vanpouille-Box, S Spada, et al. Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol Res. 2018;6(8):910-920.
59 LF Deng, H Liang, M Xu, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41(5):843-852.
60 MM Xu, Y Pu, DL Han, et al. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein alpha signaling. Immunity. 2017;47(2):363-373.
61 KR King, AD Aguirre, YX Ye, et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat Med. 2017;23(12):1481-1487.
62 C Lood, LP Blanco, MM Purmalek, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146-153.
63 J Kim, HS Kim, JH Chung. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp Mol Med. 2023;55(3):510-519.
64 NA Bonekamp, NG Larsson. SnapShot: mitochondrial nucleoid. Cell. 2018;172(1-2):388.
65 A Decout, JD Katz, S Venkatraman, A Ablasser. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21(9):548-569.
66 K McArthur, LW Whitehead, JM Heddleston, et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science. 2018;359(6378):eaao6047.
67 JS Riley, G Quarato, C Cloix, et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. Embo J. 2018;37(17):e99238.
68 J Kim, R Gupta, LP Blanco, et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science. 2019;366(6472):1531-1536.
69 CH Yu, S Davidson, CR Harapas, et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell. 2020;183(3):636-649.
70 AP West, W Khoury-Hanold, M Staron, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520(7548):553-557.
71 Z Wu, S Oeck, AP West, et al. Mitochondrial DNA stress signalling protects the nuclear genome. Nat Metab. 2019;1(12):1209-1218.
72 LD Aarreberg, K Esser-Nobis, C Driscoll, A Shuvarikov, JA Roby, MJ Gale. Interleukin-1 beta induces mtDNA release to activate innate immune signaling via cGAS-STING. Mol Cell. 2019;74(4):801-815.
73 ZX Dou, K Ghosh, MG Vizioli, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 2017;550(7676):402-406.
74 YA Chen, YL Shen, HY Hsia, YP Tiang, TL Sung, LY Chen. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway. Nat Struct Mol Biol. 2017;24(12):1124-1131.
75 H Yang, HZ Wang, JY Ren, Q Chen, ZJJ Chen. cGAS is essential for cellular senescence. Proc Natl Acad Sci USA. 2017;114(23):4612-4620.
76 H Jiang, XY Xue, S Panda, et al. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. Embo J. 2019;38(21):e102718.
77 HE Volkman, S Cambier, EE Gray, DB Stetson. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. Elife. 2019;8:e47491.
78 KJ Mackenzie, P Carroll, CA Martin, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548(7668):461-465.
79 Q Storozynsky, MM Hitt. The impact of radiation-induced DNA damage on cGAS-STING-mediated immune responses to cancer. Int J Mol Sci. 2020;21(22):8877.
80 RFV Medrano, A Hunger, SA Mendonca, JAM Barbuto, BE Strauss. Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget. 2017;8(41):71249-71284.
81 LC Platanias. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375-386.
82 J Klarquist, CM Hennies, MA Lehn, RA Reboulet, S Feau, EM Janssen. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J Immunol. 2014;193(12):6124-6134.
83 SM Harding, JL Benci, J Irianto, DE Discher, AJ Minn, RAG Reenberg. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548(7668):466-470.
84 M Gratia, MP Rodero, C Conrad, et al. Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS. J Exp Med. 2019;216(5):1199-1213.
85 KJ Mackenzie, P Carroll, L Lettice, et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. Embo J. 2016;35(8):831-844.
86 AM Heijink, F Talens, LT Jae, et al. BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity. Nat Commun. 2019;10(1):100.
87 ZN Wang, JM Chen, J Hu, et al. cGAS/STING axis mediates a topoisomerase II inhibitor induced tumor immunogenicity. J Clin Invest. 2019;129(11):4850-4862.
88 JF Shen, W Zhao, ZL Ju, et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 2019;79(2):311-319.
89 XW Zhang, XC Bai, ZJJ Chen. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity. 2020;53(1):43-53.
90 F Civril, T Deimling, CCD Mann, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013;498(7454):332-337.
91 PJ Kranzusch, ASY Lee, JM Berger, JA Doudna. Structure of Human cGAS Reveals a Conserved Family of Second-Messenger Enzymes in Innate Immunity. Cell Rep. 2013;3(5):1362-1368.
92 P Gao, M Ascano, Y Wu, et al. Cyclic G(2 ‘,5 ’) pA(3 ‘,5 ’)p is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013;153(5):1094-1107.
93 X Li, C Shu, GH Yi, et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 2013;39(6):1019-1031.
94 X Zhang, JX Wu, FH Du, et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 2014;6(3):421-430.
95 RM Hooy, J Sohn. The allosteric activation of cGAS underpins its dynamic signaling landscape. Elife. 2018;7:e39984.
96 PJ Kranzusch, ASY Lee, SC Wilson, et al. Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Cell. 2014;158(5):1011-1021.
97 J Hall, EC Ralph, S Shanker, et al. The catalytic mechanism of cyclic GMP-AMP synthase (cGAS) and implications for innate immunity and inhibition. Protein Sci. 2017;26(12):2367-2380.
98 SL Ergun, D Fernandez, TM Weiss, LY Li. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell. 2019;178(2):290-301.
99 SM Haag, MF Gulen, L Reymond, et al. Targeting STING with covalent small-molecule inhibitors. Nature. 2018;559(7713):269-273.
100 K Mukai, H Konno, T Akiba, et al. Activation of STING requires palmitoylation at the Golgi. Nat Commun. 2016;7:11932.
101 MS Sun, J Zhang, LQ Jiang, et al. TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking. Cell Rep. 2018;25(11):3086-3098.
102 H Ishikawa, GN Barber. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455(7213):674-678.
103 H Ishikawa, Z Ma, GN Barber. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461(7265):788-792.
104 WW Luo, S Li, C Li, et al. iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat Immunol. 2016;17(9):1057-1066.
105 BC Zhang, R Nandakumar, LS Reinert, et al. STEEP mediates STING ER exit and activation of signaling. Nat Immunol. 2020;21(8):868-879.
106 BY Zhao, FL Du, PB Xu, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature. 2019;569(7758):718-722.
107 SQ Liu, X Cai, JX Wu, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347(6227):aaa2630.
108 JM Gonzalez-Navajas, J Lee, M David, E Raz. Immunomodulatory functions of type I interferons. Nat Rev Immunol. 2012;12(2):125-135.
109 F Ma, B Li, YX Yu, SS Iyer, MY Sun, GH Cheng. Positive feedback regulation of type I interferon by the interferon-stimulated gene STING. Embo Rep. 2015;16(2):202-212.
110 A Orvedahl, S MacPherson, R Sumpter, Z Talloczy, ZJ Zou, B Levine. Autophagy protects against sindbis virus infection of the central nervous system. Cell Host Microbe. 2010;7(2):115-127.
111 A Chong, TD Wehrly, R Child, et al. Cytosolic clearance of replication-deficient mutants reveals Francisella tularensis interactions with the autophagic pathway. Autophagy. 2012;8(9):1342-1356.
112 M Pilli, J Arko-Mensah, M Ponpuak, et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity. 2012;37(2):223-234.
113 T Prabakaran, C Bodda, C Krapp, et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. Embo J. 2018;37(8):e97858.
114 HF Zhu, RZ Zhang, L Yi, YD Tang, CF Zheng. UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation. J Med Virol. 2022;94(9):4490-4501.
115 Z Hong, TC Ma, X Liu, C Wang. cGAS-STING pathway: post-translational modifications and functions in sterile inflammatory diseases. Febs J. 2022;289(20):6187-6208.
116 HP Liu, HP Zhang, XY Wu, et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature. 2018;563(7729):131-136.
117 GJ Seo, A Yang, B Tan, et al. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep. 2015;13(2):440-449.
118 M Li, HB Shu. Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response. Protein Cell. 2020;11(8):584-599.
119 L Zhong, MM Hu, Lj Bian, Y Liu, Q Chen, HB Shu. Phosphorylation of cGAS by CDK1 impairs self-DNA sensing in mitosis. Cell Discov. 2020;6:26.
120 T Li, TZ Huang, ZJJ Chen. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. J Immunol. 2021;371(6535):eabc5386.
121 RL Welchman, C Gordon, RJ Mayer. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol. 2005;6(8):599-609.
122 H Konno, K Konno, GN Barber. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell. 2013;155(3):688-698.
123 GJ Seo, C Kim, WJ Shin, EH Sklan, H Eoh, JU Jung. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat Commun. 2018;9(1):613.
124 Q Wang, LY Huang, Z Hong, et al. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response. PLoS Pathog. 2017;13(3):e1006264.
125 MX Chen, QC Meng, YF Qin, et al. TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses. Mol Cell. 2016;64(1):105-119.
126 YY Guo, F Jiang, LL Kong, et al. Cutting edge: USP27X deubiquitinates and stabilizes the DNA sensor cGAS to regulate cytosolic DNA-mediated signaling. J Immunol. 2019;203(8):2049-2054.
127 Q Zhang, Z Tang, R An, LY Ye, B Zhong. USP29 maintains the stability of cGAS and promotes cellular antiviral responses and autoimmunity. Cell Res. 2020;30(10):914-927.
128 Y Cui, HS Yu, X Zheng, et al. SENP7 potentiates cGAS activation by relieving SUMO-mediated inhibition of cytosolic DNA sensing. PLoS Pathog. 2017;13(1):e1006156.
129 MM Hu, Q Yang, XQ Xie, et al. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity. 2016;45(3):555-569.
130 P Xia, BQ Ye, S Wang, et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol. 2016;17(4):369-378.
131 A Saeed, XL Ruan, HX Guan, JQ Su, SY Ouyang. Regulation of cGAS-mediated immune responses and immunotherapy. Adv Sci. 2020;7(6):1902599.
132 YT Wang, XH Ning, PF Gao, et al. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection. Immunity. 2017;46(3):393-404.
133 A Rongvaux, R Jackson, CCD Harman, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell. 2014;159(7):1563-1577.
134 MJ White, K McArthur, D Metcalf, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014;159(7):1549-1562.
135 XH Ning, YT Wang, M Jing, et al. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol Cell. 2019;74(1):19-31.
136 J Dai, YJ Huang, XH He, M Zhao, T Li. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell. 2019;176(6):1447-1460.
137 ZM Song, H Lin, XM Yi, W Guo, HB Shu. KAT5 acetylates cGAS to promote innate immune response to DNA virus. Proc Natl Acad Sci USA. 2020;117(35):21568-21575.
138 DP Ma, M Yang, QS Wang, CY Sun, LH Han. Arginine methyltransferase PRMT5 negatively regulates cGAS-mediated antiviral immune response. Sci Adv. 2021;7(13):eabc1834.
139 L Burdette, Dara, E Vance, Russell. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol. 2012;14(1):19-26.
140 B Zhong, L Zhang, CQ Lei, et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity. 2009;30(3):397-407.
141 QJ Li, LB Lin, YL Tong, et al. TRIM29 negatively controls antiviral immune response through targeting STING for degradation. Cell Discov. 2018;4:13.
142 YM Wang, QS Lian, B Yang, et al. TRIM30 alpha Is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathog. 2015;11(6):e1005012.
143 LL Zhang, N Wei, Y Cui, et al. The deubiquitinase CYLD is a specific checkpoint of the STING antiviral signaling pathway. PLoS Pathog. 2018;14(11):e1007435.
144 Y Qin, MT Zhou, MM Hu, et al. RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathog. 2014;10(9):e1004358.
145 M Zhang, MX Zhang, Q Zhang, et al. USP18 recruits USP20 to promote innate antiviral response through deubiquitinating STING/MITA. Cell Res. 2016;26(12):1302-1319.
146 YY Guo, F Jiang, LL Kong, et al. OTUD5 promotes innate antiviral and antitumor immunity through deubiquitinating and stabilizing STING. Cell Mol Immunol. 2021;18(8):1945-1955.
147 T Tsuchida, JA Zou, T Saitoh, et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity. 2010;33(5):765-776.
148 J Zhang, MM Hu, YY Wang, HB Shu. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J Biol Chem. 2012;287(34):28646-28655.
149 GX Ni, H Konno, GN Barber. Ubiquitination of STING at lysine 224 controls IRF3 activation. Sci Immunol. 2017;2(11):eaah7119.
150 ZD Zhang, TC Xiong, SQ Yao, et al. RNF115 plays dual roles in innate antiviral responses by catalyzing distinct ubiquitination of MAVS and MITA. Nat Commun. 2020;11(1):5536.
151 MF Tian, WY Liu, Q Zhang, et al. MYSM1 represses innate immunity and autoimmunity through suppressing the cGAS-STING pathway. Cell Rep. 2020;33(3):917-920.
152 Q Wang, X Liu, Y Cui, et al. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity. 2014;41(6):919-933.
153 H Sun, Q Zhang, YY Jing, et al. USP13 negatively regulates antiviral responses by deubiquitinating STING. Nat Commun. 2017;8:15534.
154 XC Wu, ZY Wang, D Qiao, et al. Porcine circovirus type 2 infection attenuates the K63-linked ubiquitination of STING to inhibit IFN-beta induction via p38-MAPK pathway. Vet Microbiol. 2021;258:109098.
155 JW Zhang, YF Chen, XF Chen, et al. Deubiquitinase USP35 restrains STING-mediated interferon signaling in ovarian cancer. Cell Death Differ. 2021;28(1):139-155.
156 BY Zhao, C Shu, XS Gao, et al. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Proc Natl Acad Sci USA. 2016;113(24):E3403-E3412.
157 MT Jia, DH Qin, CY Zhao, et al. Redox homeostasis maintained by GPX4 facilitates STING activation. Nat Immunol. 2020;21(7):727-735.
158 AL Hansen, GJ Buchan, M Ruhl, et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proc Natl Acad Sci USA. 2018;115(33):E7768-E7775.
159 Y Du, ZQ Hu, YE Luo, HY Wang, X Yu, RF Wang. Function and regulation of cGAS-STING signaling in infectious diseases. Front Immunol. 2023;14:1130423.
160 ZL Cheng, T Dai, XL He, et al. The interactions between cGAS-STING pathway and pathogens. Signal Transduct Tar. 2020;5(1):91.
161 KC Barnett, JM Coronas-Serna, W Zhou, et al. Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA. Cell. 2019;176(6):1432-1446.
162 MJ Du, ZJJ Chen. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science. 2018;361(6403):704-709.
163 B Sun, KB Sundstrom, JJ Chew, et al. Dengue virus activates cGAS through the release of mitochondrial DNA. Sci Rep-UK. 2017;7(1):3594.
164 K Bartsch, K Knittler, C Borowski, et al. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum Mol Genet. 2017;26(20):3960-3972.
165 CG Wang, YK Guan, MZ Lv, et al. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity. 2018;48(4):675-687.e7.
166 A Bridgeman, J Maelfait, T Davenne, et al. Viruses transfer the antiviral second messenger cGAMP between cells. Science. 2015;349(6253):1228-1232.
167 M Gentili, J Kowal, M Tkach, et al. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science. 2015;349(6253):1232-1236.
168 C Zhou, X Chen, R Planells-Cases, et al. Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity. Immunity. 2020;52(5):767-781.e6.
169 M Kalamvoki, B Roizman. HSV-1 degrades, stabilizes, requires, or is stung by STING depending on ICP0, the US3 protein kinase, and cell derivation. Proc Natl Acad Sci USA. 2014;111(5):611-617.
170 M Iampietro, C Dumont, C Mathieu, et al. Activation of cGAS/STING pathway upon paramyxovirus infection. Iscience. 2021;24(6):102519.
171 Z Zhou, XY Zhang, XB Lei, et al. Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection. Signal Transduct Tar. 2021;6(1):382.
172 XM Liu, L Wei, FW Xu, et al. SARS-CoV-2 spike protein-induced cell fusion activates the cGAS-STING pathway and the interferon response. Sci Signal. 2022;15(729):eabg8744.
173 JM Berthelot, F Liote, Y Maugars, J Sibilia. Lymphocyte changes in severe COVID-19: delayed over-activation of STING? Front Immunol. 2020;11:607069.
174 JJ Valdes-Aguayo, I Garza-Veloz, JR Vargas-Rodriguez, et al. Peripheral blood mitochondrial DNA levels were modulated by SARS-CoV-2 infection severity and its lessening was associated with mortality among hospitalized patients with COVID-19. Front Cell Infect Mi. 2021;11:754708.
175 TJ Costa, SR Potje, TFC Fraga-Silva, et al. Mitochondrial DNA and TLR9 activation contribute to SARS-CoV-2-induced endothelial cell damage. Vasc Pharmacol. 2022;142:106946.
176 VP Targhetta, MA Amaral, NOS Camara. Through DNA sensors and hidden mitochondrial effects of SARS-CoV-2. J Venom Anim Toxins. 2021;27:e20200183.
177 HF Zhu, CF Zheng. The race between host antiviral innate immunity and the immune evasion strategies of herpes simplex virus 1. Microbiol Mol Biol R. 84(4):e00099-20.
178 JB Eaglesham, PJ Kranzusch. Conserved strategies for pathogen evasion of cGAS-STING immunity. Curr Opin Immunol. 2020;66:27-34.
179 X Lahaye, T Satoh, M Gentili, et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity. 2013;39(6):1132-1142.
180 CL Sun, SA Schattgen, P Pisitkun, et al. Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection. J Immunol. 2015;194(4):1819-1831.
181 S Aguirre, P Luthra, MT Sanchez-Aparicio, et al. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat Microbiol. 2017;2:17037.
182 N Meade, C Furey, H Li, et al. Poxviruses evade cytosolic sensing through disruption of an mTORC1-mTORC2 regulatory circuit. Cell. 2018;174(5):1143-1157.
183 CH Su, CF Zheng, RM Sandri-Goldin. Herpes simplex virus 1 abrogates the cGAS/STING-mediated cytosolic DNA-sensing pathway via its virion host shutoff protein, UL41. J Virol. 2017;91(6):e02414-16.
184 JJ Wu, WW Li, YM Shao, et al. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe. 2015;18(3):333-344.
185 ZF Huang, HM Zou, BW Liao, et al. Human cytomegalovirus protein UL31 inhibits DNA sensing of cGAS to mediate immune evasion. Cell Host Microbe. 2018;24(1):69-80.
186 YZ Fu, Y Guo, HM Zou, et al. Human cytomegalovirus protein UL42 antagonizes cGAS/MITA-mediated innate antiviral response. PLoS Pathog. 2019;15(5):e1007691.
187 J Huang, HJ You, CH Su, et al. Herpes simplex virus 1 tegument protein VP22 abrogates cGAS/STING-mediated antiviral innate immunity. J Virol. 2018;92(15):e00841-18.
188 JJ Zhang, J Zhao, SM Xu, et al. Species-specific deamidation of cGAS by herpes simplex virus UL37 protein facilitates viral replication. Cell Host Microbe. 2018;24(2):234-248.
189 A Ablasser, JL Schmid-Burgk, I Hemmerling, et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature. 2013;503(7477):530-534.
190 JB Eaglesham, YD Pan, TS Kupper, PJ Kranzusch. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling. Nature. 2019;566(7743):259-263.
191 LY Li, Q Yin, P Kuss, et al. Hydrolysis of 2'3'-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat Chem Biol. 2014;10(12):1043-1048.
192 SL Landman, ME Ressing, AG van der Veen. Balancing STING in antimicrobial defense and autoinflammation. Cytokine Growth F R. 2020;55:1-14.
193 L Lau, EE Gray, RL Brunette, DB Stetson. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science. 2015;350(6260):568-571.
194 YH Liu, JH Li, JL Chen, et al. Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. J Virol. 2015;89(4):2287-2300.
195 JE Kim, YE Kim, MF Stinski, JH Ahn, YJ Song. Human cytomegalovirus IE2 86 kDa protein induces STING degradation and inhibits cGAMP-mediated IFN-beta induction. Front Microbiol. 2018;9:350.
196 GH Yi, YH Wen, C Shu, et al. Hepatitis C virus NS4B can suppress STING accumulation to evade innate immune responses. J Virol. 2016;90(1):254-265.
197 L Sun, YL Xing, XJ Chen, et al. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One. 2012;7(2):e30802.
198 MH Christensen, SB Jensen, JJ Miettinen, et al. HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression. Embo J. 2016;35(13):1385-1399.
199 DD Zhang, CH Su, CF Zheng. Herpes simplex virus 1 serine protease VP24 blocks the DNA-sensing signal pathway by abrogating activation of interferon regulatory factor 3. J Virol. 2016;90(12):5824-5829.
200 D Verpooten, Y Ma, S Hou, Z Yan. Control of TANK-binding kinase 1-mediated signaling by the γ1 34.5 protein of herpes simplex virus 1. J Biol Chem. 2009;284(2):1097-1105.
201 R Ye, C Su, H Xu, C Zheng. Herpes simplex virus 1 ubiquitin-specific protease UL36 abrogates NF-kappaB activation in DNA sensing signal pathway. J Virol. 2017;91(5):e02417-16.
202 H Xu, C Su, A Pearson, CH Mody, C Zheng. Herpes simplex virus 1 UL24 abrogates the DNA sensing signal pathway by inhibiting NF-kappaB activation. J Virol. 2017;91(7):e00025-17.
203 HJ You, YY Lin, F Lin, et al. β-Catenin is required for the cGAS/STING signaling pathway but antagonized by the herpes simplex virus 1 US3 protein. J Virol. 2020;94(5):e01847-19.
204 R Chanut, V Petrilli. Cytosolic DNA sensing by the cGAS-STING pathway in cancer. M S-Med Sci. 2019;35(6-7):527-534.
205 RD Schreiber, LJ Old, MJ Smyth. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565-1570.
206 Z Liu, D Wang, J Zhang, et al. cGAS-STING signaling in the tumor microenvironment. Cancer Lett. 2023;577:216409.
207 R Wang, A Hussain, Q Guo, M Ma. cGAS-STING at the crossroads in cancer therapy. Crit Rev Oncol Hemat. 2024;193:104194.
208 JL Zhou, Z Zhuang, JM Li, ZH Feng. Significance of the cGAS-STING pathway in health and disease. Int J Mol Sci. 2023;24(17):13316.
209 C Tournier, A Gallimore, OPG Wheeler, L Unterholzner. DNA sensing in cancer: pro-tumour and anti-tumour functions of cGAS–STING signalling. Essays Biochem. 2023;67(6):905-918.
210 SY Yum, MH Li, ZJJ Chen. Old dogs, new trick: classic cancer therapies activate cGAS. Cell Res. 2020;30(8):639-648.
211 A Roers, B Hiller, V Hornung. Recognition of endogenous nucleic acids by the innate immune system. Immunity. 2016;44(4):739-754.
212 SSW Ho, WYL Zhang, NYJ Tan, et al. The DNA structure-specific endonuclease MUS81 mediates DNA sensor STING-dependent host rejection of prostate cancer cells. Immunity. 2016;44(5):1177-1189.
213 YJ Shen, N Le Bert, AA Chitre, et al. Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep. 2015;11(3):460-473.
214 J Luo, NL Solimini, SJ Elledge. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009;136(5):823-837.
215 SR Woo, MB Fuertes, L Corrales, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41(5):830-842.
216 N Vashi, SF Bakhoum. The evolution of STING signaling and its involvement in cancer. Trends Biochem Sci. 2021;46(6):446-460.
217 F Simone, G Lorenzo, K Guido. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9:447-464.
218 MC Boelens, TJ Wu, BY Nabet, et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. 2014;159(3):499-513.
219 A Zomer, C Maynard, FJ Verweij, et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161(5):1046-1057.
220 LT Khoo, LY Chen. Role of the cGAS-STING pathway in cancer development and oncotherapeutic approaches. Embo Rep. 2018;19(12):e46935.
221 HS Du, TM Xu, MH Cui. cGAS-STING signaling in cancer immunity and immunotherapy. Biomed Pharmacother. 2021;133:110972.
222 M De Cecco, T Ito, AP Petrashen, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019;566(7742):73-78.
223 TM Loo, K Miyata, Y Tanaka, A Takahashi. Cellular senescence and senescence-associated secretory phenotype via the cGAS-STING signaling pathway in cancer. Cancer Sci. 2020;111(2):304-311.
224 A Li, M Yi, S Qin, Y Song, Q Chu, K Wu. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol. 2019;12(1):35.
225 MF Gulen, U Koch, SM Haag, et al. Signalling strength determines proapoptotic functions of STING. Nat Commun. 2017;8(1):427.
226 Y Liu, AA Jesus, B Marrero, et al. Activated STING in a vascular and pulmonary syndrome. New Engl J Med. 2014;371(6):507-518.
227 J Ahn, TL Xia, H Konno, K Konno, P Ruiz, GN Barber. Inflammation-driven carcinogenesis is mediated through STING. Nat Commun. 2014;5:5166.
228 BYD Hoong, YH Gan, HY Liu, ES Chen. cGAS-STING pathway in oncogenesis and cancer therapeutics. Oncotarget. 2020;11(30):2930-2955.
229 T Reisl?nder, EP Lombardi, FJ Groelly, et al. BRCA2 abrogation triggers innate immune responses potentiated by treatment with PARP inhibitors. Nat Commun. 2019;10(1):3163.
230 JA Carozza, V B?hnert, KC Nguyen, et al. Extracellular cGAMP is a cancer-cell-produced immunotransmitter involved in radiation-induced anticancer immunity. Nat Cancer. 2020;1(2):184-196.
231 Q Chen, A Boire, X Jin, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. 2016;533(7604):493-498.
232 CK Holm, SB Jensen, MR Jakobsen, et al. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nat Immunol. 2012;13(8):737-743.
233 M Heyman, D Grai, K Br?ndum-Nielsen, Y Lir, S S?derh?ll, S Einhorn. Deletions of the shorlt arm of chromosome 9, including the interferon - α/β genes, in acute lympocytic leukemia. Stuides on loss of heterozygosity, parental origin of deleted genes and prognosis. Int J Cancer. 1993;54(5):748-753.
234 SS Song, PK Peng, ZQ Tang, et al. Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Sci Rep-UK. 2017;7:39858.
235 SY Wu, Q Zhang, F Zhang, et al. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nat Cell Biol. 2019;21(8):1027-1040.
236 H Konno, S Yamauchi, A Berglund, RM Putney, JJ Mule, GN Barber. Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene. 2018;37(15):2037-2051.
237 A Ablasser, F Bauernfeind, G Hartmann, E Latz, KA Fitzgerald, V Hornung. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nat Immunol. 2009;10(10):1065-1072.
238 YJ Crow, BE Hayward, R Parmar, et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat Genet. 2006;38(8):917-920.
239 GI Rice, MP Rodero, YJ Crow. Human disease phenotypes associated with mutations in TREX1. J Clin Immunol. 2015;(3):235-243.
240 S Sharma, AM Campbell, J Chan, et al. Suppression of systemic autoimmunity by the innate immune adaptor STING. Proc Natl Acad Sci USA. 2015;112(7):E710-E717.
241 D Gao, T Li, XD Li, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci USA. 2015;112(42):E5699-E5705.
242 V Kumar. A STING to inflammation and autoimmunity. J Leukocyte Biol. 2019;106(1):171-185.
243 V Pokatayev, N Hasin, H Chon, et al. RNase H2 catalytic core Aicardi-Goutieres syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. J Exp Med. 2016;213(3):329-336.
244 AC Chin. Neuroinflammation and the cGAS-STING pathway. J Neurophysiol. 2019;121(4):1087-1091.
245 K Chen, C Lai, Y Su, et al. cGAS-STING-mediated IFN-I response in host defense and neuroinflammatory diseases. Curr Neuropharmacol. 2022;20(2):362-371.
246 V Mathur, R Burai, RT Vest. Activation of the STING-dependent type I interferon response reduces microglial reactivity and neuroinflammation. Neuron. 2017;96(6):1290-1302.
247 ME McCauley, JG O'Rourke, A Yanez, et al. C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature. 2020;585(7823):96-101.
248 H Quek, J Luff, KG Cheung, et al. A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Hum Mol Genet. 2017;26(1):109-123.
249 MF Gulen, N Samson, A Keller, et al. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature. 2023;620(7973):374-380.
250 MR Minter, BS Main, KM Brody, M Zhang, JM Taylor, PJ Crack. Soluble amyloid triggers a myeloid differentiation factor 88 and interferon regulatory factor 7 dependent neuronal type-1 interferon response in vitro. J Neuroinflamm. 2015;12:71.
251 M Govindarajulu, S Ramesh, M Beasley, et al. Role of cGAS–sting signaling in Alzheimer's disease. Int J Mol Sci. 2023;24(9):8151.
252 DA Sliter, J Martinez, L Hao, et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018;561(7722):258-262.
253 U Tr?ger, R Andre, N Lahiri, et al. HTT-lowering reverses Huntington's disease immune dysfunction caused by NFκB pathway dysregulation. Brain. 2014;137(3):819-833.
254 M Bjorkqvist, EJ Wild, J Thiele, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease(Article). J Exp Med. 2008;205(8):1869-1877.
255 N Pavese, A Gerhard, YF Tai, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology. 2006;66(11):1638-1643.
256 M Politis, N Pavese, YF Tai, et al. Microglial activation in regions related to cognitive function predicts disease onset in Huntington's disease: a multimodal imaging study. Hum Brain Mapp. 2011;32(2):258-270.
257 A Jauhari, SV Baranov, Y Suofu, et al. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Invest. 2020;130(6):3124-3136.
258 M Sharma, S Rajendrarao, N Shahani, UN Ramírez-Jarquín, S Subramaniam. Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in huntington disease. Proc Natl Acad Sci USA. 2020;117(27):15989-15999.
259 CR Donnelly, C Jiang, AS Andriessen, et al. STING controls nociception via type I interferon signalling in sensory neurons. Nature. 2021;591(7849):275-280.
260 WY Wu, XW Zhang, S Wang, et al. Pharmacological inhibition of the cGAS-STING signaling pathway suppresses microglial M1-polarization in the spinal cord and attenuates neuropathic pain. Neuropharmacology. 2022;217:109206.
261 JX Wu, X Li, XX Zhang, WB Wang, XJ You. What role of the cGAS-STING pathway plays in chronic pain? Front Mol Neurosci. 2022;15:963206.
262 Y Chen, Y Hu, X He, et al. Activation of mitochondrial DNA-mediated cGAS-STING pathway contributes to chronic postsurgical pain by inducing type I interferons and A1 reactive astrocytes in the spinal cord. Int Immunopharmacol. 2024;127:111348.
263 Y Hu, Y Chen, T Liu, C Zhu, L Wan, W Yao. The bidirectional roles of the cGAS-STING pathway in pain processing: cellular and molecular mechanisms. Biomed Pharmacother. 2023;163:114869.
264 DM Zhang, C Liu, H Li, JW Jiao. Deficiency of STING signaling in embryonic cerebral cortex leads to neurogenic abnormalities and autistic-like behaviors. Adv Sci. 2020;7(23):2002117.
265 N Duan, Y Zhang, SW Tan, et al. Therapeutic targeting of STING-TBK1-IRF3 signalling ameliorates chronic stress induced depression-like behaviours by modulating neuroinflammation and microglia phagocytosis. Neurobiol Dis. 2022;169:105739.
266 XM Liu, WH Chen, CK Wang, et al. Silibinin ameliorates depression/anxiety-like behaviors of Parkinson's disease mouse model and is associated with attenuated STING-IRF3-IFN-β pathway activation and neuroinflammation. Physiol Behav. 2021;241:113593.
267 Z Wang, N Chen, Z Li, et al. The cytosolic DNA-sensing cGAS-STING pathway in liver diseases. Front Cell Dev Biol. 2021;9:717610.
268 JL Bai, F Liu. cGAS?STING signaling and function in metabolism and kidney diseases. J Mol Cell Biol. 2021;13(10):728-738.
269 J Luther, S Khan, MK Gala, et al. Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. Proc Natl Acad Sci USA. 2020;117(21):11667-11673.
270 X Luo, H Li, L Ma, et al. Expression of STING is increased in liver tissues from patients with NAFLD and promotes macrophage-mediated hepatic inflammation and fibrosis in mice. Gastroenterology. 2018;155(6):1971-1984.
271 T Bao, J Liu, J Leng, L Cai. The cGAS-STING pathway: more than fighting against viruses and cancer. Cell Biosci. 2021;11(1):209.
272 S Pawaria, K Nündel, KM Gao, et al. Role of interferon-γ-producing Th1 cells in a murine model of Type I interferon-independent autoinflammation resulting from DNase II deficiency. Arthritis Rheumatol. 2020;72(2):359-370.
273 YS Yu, Y Liu, WS An, JW Song, YF Zhang, XX Zhao. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. J Clin Invest. 2019;129(2):546-555.
274 C Chen, RX Yang, HG Xu. STING and liver disease. J Gastroenterol. 2021;56(8):704-712.
275 A Iracheta-Vellve, J Petrasek, B Gyongyosi, et al. Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes. J Biol Chem. 2016;291(52):26794-26805.
276 XX Wang, HY Rao, JM Zhao, et al. STING expression in monocyte-derived macrophages is associated with the progression of liver inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Lab Invest. 2019;100(4):542-552.
277 S Luo, R Luo, H Lu, et al. Activation of cGAS-STING signaling pathway promotes liver fibrosis and hepatic sinusoidal microthrombosis. Int Immunopharmacol. 2023;125:111132.
278 M Nascimento, A Gombault, N Lacerda-Queiroz, et al. Self-DNA release and STING-dependent sensing drives inflammation to cigarette smoke in mice. Sci Rep-UK. 2019;9(1):14848.
279 S Benmerzoug, S Rose, B Bounab, et al. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nat Commun. 2018;9(1):5226.
280 H Qiu, D Weng, T Chen, et al. Stimulator of interferon genes deficiency in acute exacerbation of idiopathic pulmonary fibrosis. Front Immunol. 2017;8:1756.
281 F Savigny, C Schricke, N Lacerda-Queiroz, et al. Protective role of the nucleic acid sensor STING in pulmonary fibrosis. Front Immunol. 2020;11:588799.
282 Y Han, L Chen, H Liu, et al. Airway epithelial cGAS is critical for induction of experimental allergic airway inflammation. J Immunol. 2020;204(6):1437-1447.
283 NR Bhakta, SA Christenson, S Nerella, et al. IFN-stimulated gene expression, type 2 inflammation, and endoplasmic reticulum stress in asthma. Am J Resp Crit Care. 2018;197(3):313-324.
284 C Sun, H Shi, X Zhao, et al. The activation of cGAS-STING in acute kidney injury. J Inflamm Res. 2023;16:4461-4470.
285 L Xue, L Liu, J Huang, et al. Tumor necrosis factor-like weak inducer of apoptosis activates type I interferon signals in lupus nephritis. Biomed Res Int. 2017;2017:4927376.
286 H Maekawa, T Inoue, H Ouchi, et al. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 2019;29(5):1261-1273.e6.
287 KW Chung, P Dhillon, SZ Huang, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 2019;30(4):784-799.
288 SE Davis, AK Khatua, W Popik. Nucleosomal dsDNA stimulates APOL1 expression in human cultured podocytes by activating the cGAS/IFI16-STING signaling pathway. Sci Rep-UK. 2019;9(1):15485.
289 A Jiang, J Liu, Y Wang, C Zhang. cGAS-STING signaling pathway promotes hypoxia-induced renal fibrosis by regulating PFKFB3-mediated glycolysis. Free Radic Bio Med. 2023;208:516-529.
290 GR Martin, CM Blomquist, KL Henare, FR Jirik. Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Sci Rep-UK. 2019;9(1):14281.
291 K Aden, F Tran, G Ito, et al. ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING. J Exp Med. 2018;215(11):2868-2886.
292 J Ahn, S Son, sc Oliveira, GN Barber. STING-dependent signaling underlies IL-10 controlled inflammatory colitis. Cell Rep. 2017;21(13):3873-3884.
293 CY Chen, W Yan, Y Zhang, X Zhao, Y Fu. Atrial natriuretic peptide attenuates intestinal inflammation by regulating STING pathway. SSRN Electron J. 2020;18(4):1737-1754.
294 CM Ma, DX Yang, BW Wang, et al. Gasdermin D in macrophages restrains colitis by controlling cGAS-mediated inflammation. Sci Adv. 2020;6(21):eaaz6717.
295 MS Khan, SU Khan, SU Khan, et al. Cardiovascular diseases crossroads: cGAS-STING signaling and disease progression. Curr Prob Cardiol. 2024;49(2):102189.
296 L Ding, GJ Dong, DY Zhang, YH Ni, YY Hou. The regional function of cGAS/STING signal in multiple organs: One of culprit behind systemic lupus erythematosus? Med Hypotheses. 2015;85(6):846-849.
297 Y Mao, W Luo, L Zhang, et al. STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity. Arterioscler Thromb Vasc Biol. 2017;37(5):920-929.
298 Y Zhang, WZ Chen, Y Wang. STING is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (ER) stress. Biomed Pharmacother. 2020;125:110022.
299 L Rech, PP Rainer. The innate immune cGAS-STING-pathway in cardiovascular diseases - a mini review. Front Cardiovasc Med. 2021;8:715903.
300 J Bai, C Cervantes, J Liu, et al. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci USA. 2017;114(46):12196-12201.
301 XM Ma, K Geng, BYK Law, et al. Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes. Cell Biol Toxicol. 2023;39(1):277-299.
302 J Bai, C Cervantes, SJ He, et al. Mitochondrial stress-activated cGAS-STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Commun Biol. 2020;3(1):257.
303 VH Cruz, EN Arner, KW Wynne, PE Scherer, RA Brekken. Loss of Tbk1 kinase activity protects mice from diet-induced metabolic dysfunction. Mol Metab. 2018;16:139-149.
304 M Kumari, X Wang, L Lantier, et al. IRF3 promotes adipose inflammation and insulin resistance and represses browning. J Clin Invest. 2016;126(8):2839-2854.
305 EA Oral, SM Reilly, AV Gomez, et al. Inhibition of IKK? and TBK1 improves glucose control in a subset of patients with type 2 diabetes. Cell Metab. 2017;26(1):157-170.e7.
306 sm Reilly, SH Chiang, SJ Decker, et al. An inhibitor of the protein kinases TBK1 and IKK-? improves obesity-related metabolic dysfunctions in mice. Nat Med. 2013;19(3):313-321.
307 C Huang, W Li, X Ren, et al. The crucial roles and research advances of cGAS-STING pathway in cutaneous disorders. Inflammation. 2023;46(4):1161-1176.
308 YH Pan, YP You, L Sun, et al. The STING antagonist H-151 ameliorates psoriasis via suppression of STING/NF-κB-mediated inflammation. Brit J Pharmacol. 2021;178(24):4907-4922.
309 YS Yu, XC Xue, WD Tang, L Su, L Zhang, YF Zhang. Cytosolic DNA?mediated STING-dependent inflammation contributes to the progression of psoriasis. J Invest Dermatol. 2022;142(3):898-906.e4.
310 R Falahat, A Berglund, RM Putney, et al. Epigenetic reprogramming of tumor cell–intrinsic STING function sculpts antigenicity and T cell recognition of melanoma. Proc Natl Acad Sci USA. 2021;118(15):e2013598118.
311 J An, JJ Woodward, W Lai, et al. Inhibition of cyclic GMP-AMP synthase using a novel antimalarial drug derivative in Trex1-deficient mice. Arthritis Rheumatol. 2018;70(11):1807-1819.
312 R Ehsanian, C Van Waes, SM Feller. Beyond DNA binding - a review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun Signal. 2011;9:13.
313 F Steinhagen, T Zillinger, K Peukert, et al. Suppressive oligodeoxynucleotides containing TTAGGG motifs inhibit cGAS activation in human monocytes. Eur J Immunol. 2018;48(4):605-611.
314 J An, JJ Woodward, T Sasaki, M Minie, KB Elkon. Cutting edge: antimalarial drugs inhibit IFN-beta production through blockade of cyclic GMP-AMP synthase-DNA interaction. J Immunol. 2015;194(9):4089-4093.
315 J An, M Minie, T Sasaki, JJ Woodward, KB Elkon. Antimalarial drugs as immune modulators: new mechanisms for old drugs. Medicine. 2017;68:317-330.
316 M Wang, MA Sooreshjani, C Mikek, C Opoku-Temeng, HO Sintim. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. Future Med Chem. 2018;10(11):1301-1317.
317 J Hall, A Brault, F Vincent, et al. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay. PLoS One. 2017;12(9):e0184843.
318 J Vincent, C Adura, P Gao, et al. Publisher correction: small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nat Commun. 2017;8(1):1827.
319 L Lama, C Adura, W Xie, et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nat Commun. 2019;10(1):2261.
320 W Zhao, M Xiong, X Yuan, M Li, H Sun, Y Xu. In silico screening-based discovery of novel inhibitors of human cyclic GMP-AMP synthase: a cross-validation study of molecular docking and experimental testing. J Chem Inf Model. 2020;60(6):3265-3276.
321 R Padilla-Salinas, LJ Sun, R Anderson, et al. Discovery of small-molecule cyclic GMP-AMP synthase inhibitors. J Org Chem. 2020;85(3):1579-1600.
322 T Siu, MD Altman, GA Baltus, et al. Discovery of a novel cGAMP competitive ligand of the inactive form of STING. ACS Med Chem Lett. 2019;10(1):92-97.
323 S Li, Z Hong, Z Wang, et al. The cyclopeptide astin C specifically inhibits the innate immune CDN sensor STING. Cell Rep. 2018;25(12):3405-3421.
324 T Li, ZJ Chen. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med. 2018;215(5):1287-1299.
325 HO Sintim, CG Mikek, M Wang, MA Sooreshjani. Interrupting cyclic dinucleotide-cGAS-STING axis with small molecules. MedChemComm. 2019;10(12):1999-2023.
326 EV Vinogradova, XY Zhang, D Remillard, et al. An activity-guided map of electrophile-cysteine interactions in primary human T cells. Cell. 2020;182(4):1009-1026.
327 BJ Huffman, S Chen, JL Schwarz, et al. Electronic complementarity permits hindered butenolide heterodimerization and discovery of novel cGAS/STING pathway antagonists. Nat Chem. 2020;12(3):310-317.
328 RI Feldman, JM Wu, MA Polokoff, et al. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. J Biol Chem. 2005;280(20):19867-19874.
329 ML Frmond, C Uggenti, Lv Eyck, et al. Brief report: blockade of TANK-binding kinase 1/IKK? inhibits mutant stimulator of interferon genes (STING)-mediated inflammatory responses in human peripheral blood mononuclear cells. Arthritis Rheumatol. 2017;69(7):1495-1501.
330 M Hasan, N Yan. Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies. Pharmacol Res. 2016;111:336-342.
331 K Clark, M Peggie, L Plater, et al. Novel cross-talk within the IKK family controls innate immunity. Biochem J. 2011;434(1):93-104.
332 A Richters, D Basu, J Engel, et al. Identification and further development of potent TBK1 inhibitors. ACS Chem Biol. 2015;10(1):289-298.
333 M Hasan, N Dobbs, S Khan, et al. Cutting edge: Inhibiting TBK1 by compound II ameliorates autoimmune disease in mice. J Immunol. 2015;195(10):4573-4577.
334 J Qi, Z Zhou, CW Lim, JW Kim, B Kim. Amlexanox ameliorates acetaminophen-induced acute liver injury by reducing oxidative stress in mice. Toxicol Appl Pharmacol. 2019;385:114767.
335 Z Zhou, J Qi, J Zhao, CW Lim, JW Kim, B Kim. Dual TBK1/IKKvarepsilon inhibitor amlexanox attenuates the severity of hepatotoxin-induced liver fibrosis and biliary fibrosis in mice. J Cell Mol Med. 2020;24(2):1383-1398.
336 S Xiang, SK Song, HT Tang, et al. TANK-binding kinase 1 (TBK1): An emerging therapeutic target for drug discovery. Drug Discov Today. 2021;26(10):2445-2455.
337 TS Beyett, X Gan, SM Reilly, et al. Carboxylic acid derivatives of amlexanox display enhanced potency toward TBK1 and IKK ε and reveal mechanisms for selective inhibition. Mol Pharmacol. 2018;94(4):1210-1219.
338 SM Reilly, AV Gomez, TS Beyett, et al. Design, synthesis, and biological activity of substituted 2-amino-5-oxo-5H-chromeno[2,3-b]pyridine-3-carboxylic acid derivatives as inhibitors of the inflammatory kinases TBK1 and IKKε for the treatment of obesity. Bioorgan Med Chem. 2018;26(20):5443-5461.
339 M Zhang, Y Zou, X Zhou, J Zhou. Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Front Immunol. 2022;13:954129.
340 RU Tomalika, DJ Matt, RB Katherine, et al. Pharmacological inhibition of TBK1/IKKε blunts immunopathology in a murine model of SARS-CoV-2 infection. Nat Commun. 2023;14(1):5666.
341 L Gingipalli, Q Su, T Wang, et al. Discovery of azabenzimidazole derivatives as potent, selective inhibitors of TBK1/IKKε kinases. Bioorg Med Chem Lett. 2012;22(5):2063-2069.
342 HL Vu, AE Aplin. Targeting TBK1 inhibits migration and resistance to MEK inhibitors in mutant NRAS melanoma. Mol Cancer Res. 2014;12(10):1509-1519.
343 O Danilchanka, JJ Mekalanos. Cyclic dinucleotides and the innate immune response. Cell. 2013;154(5):962-970.
344 DKR Karaolis, GH Cheng, M Lipsky, et al. 3',5'-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation. Infect Genet Evol. 2005;392(1):40-45.
345 CHA Tang, JA Zundell, S Ranatunga, et al. Agonist-mediated activation of STING induces apoptosis in malignant B cells. Cancer Res. 2016;76(8):2137-2152.
346 TJ Li, H Cheng, H Yuan, et al. Antitumor activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response. Sci Rep-UK. 2016;6:19049.
347 T Ohkuri, A Kosaka, K Ishibashi, et al. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol Immun. 2017;66(6):705-716.
348 O Demaria, A De Gassart, S Coso, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci USA. 2015;112(50):15408-15413.
349 J Zheng, J Mo, T Zhu, et al. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Mol Cancer. 2020;19(1):133.
350 L Corrales, LH Glickman, SM McWhirter, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11(7):1018-1030.
351 F Meric-Bernstam, RF Sweis, FS Hodi, et al. Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clin Cancer Res. 2022;28(4):677-688.
352 DP Zandberg, R Ferris, D Laux, et al. A phase II study of ADU-S100 in combination with pembrolizumab in adult patients with PD-L1+recurrent or metastatic HNSCC: Preliminary safety, efficacy and PK/PD results. Ann Oncol. 2020;31:S1446-S1447.
353 W Chang, MD Altman, CA Lesburg, et al. Discovery of MK-1454: a potent cyclic dinucleotide stimulator of interferon genes agonist for the treatment of cancer. J Med Chem. 2022;65(7):5675-5689.
354 KJ Harrington, J Brody, M Ingham, et al. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. Ann Oncol. 2018;29:712-712.
355 A Endo, DS Kim, KC Huang, et al. Abstract 4456: discovery of E7766: a representative of a novel class of macrocycle-bridged STING agonists (MBSAs) with superior potency and pan-genotypic activity. Cancer Res. 2019;79(13):4456.
356 JJ Luke, F Janku, J Strauss, et al. A phase I/Ib dose-escalation study of intravenously administered SB 11285 alone and in combination with nivolumab in patients with advanced solid tumours. Ann Oncol. 2020;31:S500.
357 K Harrington, E Parkes, J Weiss, et al. Phase I, first-in-human trial evaluating BI 1387446 (stimulator of interferon genes sting agonist) alone and combined with BI 754091 (anti-programmed cell death PD -1) in solid tumors. J Immunother Cancer. 2020;8:A248-A248.
358 CR Ager, H Zhang, Z Wei, P Jones, MA Curran, ME Di Francesco. Discovery of IACS-8803 and IACS-8779, potent agonists of stimulator of interferon genes (STING) with robust systemic antitumor efficacy. Bioorg Med Chem Lett. 2019;29(20):126640.
359 JJ Liu, LM Ching, M Goldthorpe, et al. Antitumour action of 5,6-dimethylxanthenone-4-acetic acid in rats bearing chemically induced primary mammary tumours. Cancer Chemother Pharmacol. 2007;59(5):661-669.
360 E Curran, XF Chen, L Corrales, et al. STING pathway activation stimulates potent immunity against acute myeloid leukemia. Cell Rep. 2016;15(11):2357-2366.
361 PN Lara, JY Douillard, K Nakagawa, et al. Randomized phase III Placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent Vadimezan (ASA404) in advanced non-small-cell lung cancer. J Clin Oncol. 2011;29(22):2965-2971.
362 T Cavlar, T Deimling, A Ablasser, KP Hopfner, V Hornung. Species-specific detection of the antiviral small-molecule compound CMA by STING. EMBO J. 2013;32(10):1440-1450.
363 Y Zhang, Z Sun, J Pei, et al. Identification of alpha-mangostin as an agonist of human STING. ChemMedChem. 2018;13(19):2057-2064.
364 C Vanpouille-Box, A Alard, MJ Aryankalayil, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8:15618.
365 C Vanpouille-Box, SC Formenti, S Demaria. TREX1 dictates the immune fate of irradiated cancer cells. Oncoimmunology. 2017;6(9):e1339857.
366 X Hu, M Zhao, M Bai, et al. PARP inhibitor plus radiotherapy reshape the immune suppressive microenvironment and potentiate the efficacy of immune checkpoint inhibitors in tumors with IDH1 mutation. Cancer Lett. 2024;24: 216676.
367 S Grabosch, M Bulatovic, FTZ Zeng, et al. Cisplatin-induced immune modulation in ovarian cancer mouse models with distinct inflammation profiles. Oncogene. 2019;38(13):2380-2393.
368 RM Chabanon, G Muirhead, DB Krastev, et al. PARP inhibition enhances tumor cell–intrinsic immunity in ERCC1-deficient non–small cell lung cancer. J Clin Invest. 2019;129(3):1211-1228.
369 T Sen, BL Rodriguez, L Chen, et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 2019;9(5):646-661.
370 ML Jiang, PX Chen, L Wang, et al. cGAS-STING, an important pathway in cancer immunotherapy. J Hematol Oncol. 2020;13(1):81.
371 JM Ramanjulu, GS Pesiridis, J Yang, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature. 2018;564(7736):439-443.
372 BS Pan, SA Perera, JA Piesvaux, et al. An orally available non-nucleotide STING agonist with antitumor activity. Science. 2020;369(6506):eaba6098.
373 L Motedayen Aval, JE Pease, R Sharma, DJ Pinato. Challenges and opportunities in the clinical development of STING agonists for cancer immunotherapy. J Clin Med. 2020;9(10):3323.
374 EN Chin, C Yu, VF Vartabedian, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science. 2020;369(6506):993-999.
375 JD Wang, G Falchook, S Nabhan, et al. Trial of SNX281, a systemically delivered small molecule sting agonist, in solid tumors and lymphomas. J Immunother Cancer. 2021;9:A527-A527.
376 RL Huang, Q Ning, JH Zhao, et al. Targeting STING for cancer immunotherapy: from mechanisms to translation. Int Immunopharmacol. 2022;113:109304.
377 FF Pu, FX Chen, JX Liu, ZC Zhang, ZW Shao. Immune regulation of the cGAS-STING signaling pathway in the tumor microenvironment and its clinical application. OncoTargets Ther. 2021;14:1501-1516.
378 BP Venkatesulu, S Mallick, SH Lin, S Krishnan. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Crit Rev Oncol Hemat. 2018;123:42-51.
379 JR Baird, D Friedman, B Cottam, et al. Radiotherapy Combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res. 2016;76(1):50-61.
380 N McGranahan, AJ Furness, R Rosenthal, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463-1469.
381 B Li, HL Chan, PP Chen. Immune checkpoint inhibitors: basics and challenges. Curr Med Chem. 2019;26(17):3009-3025.
382 AJ Minn, EJ Wherry. Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling. Cell. 2016;165(2):272-275.
383 SC Wei, CR Duffy, JP Allison. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069-1086.
384 A Ribas, JD Wolchok. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350-1355.
385 JL Benci, LR Johnson, R Choa, et al. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell. 2019;178(4):933-948.e14.
386 EE Parkes, SM Walker, LE Taggart, et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J Natl Cancer I. 2017;109(1):djw199.
387 H Wang, S Hu, X Chen, et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci USA. 2017;114(7):1637-1642.
388 BA Flood, EF Higgs, S Li, JJ Luke, TF Gajewski. STING pathway agonism as a cancer therapeutic. Immunol Rev. 2019;290(1):24-38.
389 D Chandra, W Quispe-Tintaya, A Jahangir, et al. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunol Res. 2014;2(9):901-910.
390 HL Kinkead, A Hopkins, E Lutz, et al. Combining STING-based neoantigen-targeted vaccine with checkpoint modulators enhances antitumor immunity in murine pancreatic cancer. JCI Insight. 2018;3(20):e122857.
391 ZL Wang, E Celis. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunol Immun. 2015;64(8):1057-1066.
392 JS Wei, XJ Han, J Bo, WD Han. Target selection for CAR-T therapy. J Hematol Oncol. 2019;12(1):62.
393 TT Smith, HF Moffett, SB Stephan, et al. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J Clin Invest. 2017;127(6):2176-2191.
394 YM Wang, JW Luo, A Alu, XJ Han, YQ Wei, XW Wei. cGAS-STING pathway in cancer biotherapy. Mol Cancer. 2020;19(1):1-16.
395 ST Koshy, AS Cheung, L Gu, AR Graveline, DJ Mooney. Liposomal delivery enhances immune activation by STING agonists for cancer immunotherapy. Adv Biosyst. 2017;1(1-2):1600013.
396 MC Hanson, MP Crespo, W Abraham, et al. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J Clin Invest. 2015;125(6):2532-2546.
397 Y Liu, WN Crowe, LL Wang, et al. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat Commun. 2019;10(1):5108.
398 D Shae, KW Becker, P Christov, et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat Nanotechnol. 2019;14(3):269-278.
399 M Luo, H Wang, ZH Wang, et al. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol. 2017;12(7):648-654.
400 YL Xing, A Peng, J Yang, et al. Precisely activating cGAS-STING pathway with a novel peptide-based nanoagonist to potentiate immune checkpoint blockade cancer immunotherapy. Adv Sci (Weinh) 2024;17:e2309583.
401 Y Wang, Y Liu, J Zhang, et al. Nanomaterial-mediated modulation of the cGAS-STING signaling pathway for enhanced cancer immunotherapy. Acta Biomater 2024;176:51-76.
402 HF Zhang, B Huang. Tumor cell-derived microparticles: a new form of cancer vaccine. Oncoimmunology. 2015;4(8):e1017704.
403 HF Zhang, K Tang, Y Zhang, et al. Cell-free tumor microparticle vaccines stimulate dendritic cells via cGAS/STING signaling. Cancer Immunol Res. 2015;3(2):196-205.
404 RD Junkins, MD Gallovic, BM Johnson, et al. A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J Control Release. 2018;270:1-13.
405 R Watkins-Schulz, P Tiet, MD Gallovic, et al. A microparticle platform for STING-targeted immunotherapy enhances natural killer cell- and CD8(+) T cell-mediated anti-tumor immunity. Biomaterials. 2019;205:94-105.
406 JY Zhu, XD Tang, Y Jia, CT Ho, QR Huang. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery: a review. Int J Pharm. 2020;578:119127.
407 CG Park, CA Hartl, D Schmid, EM Carmona, HJ Kim, MS Goldberg. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci Transl Med. 2018;10(433):eaar1916.
408 E Lee, HE Jang, YY Kang, J Kim, JH Ahn, H Mok. Submicron-sized hydrogels incorporating cyclic dinucleotides for selective delivery and elevated cytokine release in macrophages. Acta Biomater. 2016;29:271-281.
409 JR Baird, RB Bell, V Troesch, et al. Evaluation of explant responses to STING ligands: personalized immunosurgical therapy for head and neck squamous cell carcinoma. Cancer Res. 2018;78(21):6308-6319.
410 DG Leach, N Dharmaraj, SL Piotrowski, et al. STINGel: controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials. 2018;163:67-75.
PDF

Accesses

Citations

Detail

Sections
Recommended

/