The role of circadian clock in regulating cell functions: implications for diseases

Yanke Lin1,2, Liangliang He3, Yuting Cai4, Xiaokang Wang5, Shuai Wang4(), Feng Li1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (3) : e504. DOI: 10.1002/mco2.504
REVIEW

The role of circadian clock in regulating cell functions: implications for diseases

  • Yanke Lin1,2, Liangliang He3, Yuting Cai4, Xiaokang Wang5, Shuai Wang4(), Feng Li1()
Author information +
History +

Abstract

The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.

Keywords

cancers / cell function / circadian clock / immune cells / inflammatory diseases / signaling pathway / systemic diseases

Cite this article

Download citation ▾
Yanke Lin, Liangliang He, Yuting Cai, Xiaokang Wang, Shuai Wang, Feng Li. The role of circadian clock in regulating cell functions: implications for diseases. MedComm, 2024, 5(3): e504 https://doi.org/10.1002/mco2.504

References

1 K Zhao, B Ma, Y Xu, E Stirling, J Xu. Light exposure mediates circadian rhythms of rhizosphere microbial communities. ISME J. 2021;15(9):2655-2664.
2 TA Steele, EK St Louis, A Videnovic, RR Auger. Circadian rhythm sleep-wake disorders: a contemporary review of neurobiology, treatment, and dysregulation in neurodegenerative disease. Neurotherapeutics. 2021;18(1):53-74.
3 A Segers, I Depoortere. Circadian clocks in the digestive system. Nat Rev Gastroenterol Hepatol. 2021;18(4):239-251.
4 KB Koronowski, P Sassone-Corsi. Communicating clocks shape circadian homeostasis. Science. 2021;371(6530):eabd0951.
5 EM Teichman, KJ O'Riordan, CGM Gahan, TG Dinan, JF Cryan. When rhythms meet the blues: circadian interactions with the microbiota-gut-brain axis. Cell Metab. 2020;31(3):448-471.
6 N Ozturk, D Ozturk, IH Kavakli, A Okyar. Molecular aspects of circadian pharmacology and relevance for cancer chronotherapy. Int J Mol Sci. 2017;18(10):2168.
7 Y Wang, W Jiang, H Chen, et al. Sympathetic nervous system mediates cardiac remodeling after myocardial infarction in a circadian disruption model. Front Cardiovasc Med. 2021;8:668387.
8 MD Greenfield, H Honing, SA Kotz, A Ravignani. Synchrony and rhythm interaction: from the brain to behavioural ecology. Philos Trans R Soc Lond B Biol Sci. 2021;376(1835):20200324.
9 A Bekala, W Plotek, D Siwicka-Gieroba, et al. Melatonin and the brain-heart crosstalk in neurocritically ill patients-from molecular action to clinical practice. Int J Mol Sci. 2022;23(13):7094.
10 M Chen, Y Lin, Y Dang, et al. Reprogramming of rhythmic liver metabolism by intestinal clock. J Hepatol. 2023;79(3):741-757.
11 C Huang, C Zhang, Y Cao, J Li, F Bi. Major roles of the circadian clock in cancer. Cancer Biol Med. 2023;20(1):1-24.
12 DR Boone, SL Sell, MA Micci, et al. Traumatic brain injury-induced dysregulation of the circadian clock. PLoS One. 2012;7(10):e46204.
13 SA Tischkau. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling. Eur J Neurosci. 2020;51(1):379-395.
14 IH Kavakli, N Ozturk, I Baris. Protein interaction networks of the mammalian core clock proteins. Adv Protein Chem Struct Biol. 2022;131:207-233.
15 S Wang, Y Lin, L Gao, et al. PPAR-gamma integrates obesity and adipocyte clock through epigenetic regulation of Bmal1. Theranostics. 2022;12(4):1589-1606.
16 JS Yi, NM Diaz, S D'Souza, ED Buhr. The molecular clockwork of mammalian cells. Semin Cell Dev Biol. 2022;126:87-96.
17 S Wang, F Li, Y Lin, B Wu. Targeting REV-ERBalpha for therapeutic purposes: promises and challenges. Theranostics. 2020;10(9):4168-4182.
18 D Dong, D Yang, L Lin, S Wang, B Wu. Circadian rhythm in pharmacokinetics and its relevance to chronotherapy. Biochem Pharmacol. 2020;178:114045.
19 YG Bolsius, MD Zurbriggen, JK Kim, et al. The role of clock genes in sleep, stress and memory. Biochem Pharmacol. 2021;191:114493.
20 E Farshadi, GTJ van der Horst, I Chaves. Molecular links between the circadian clock and the cell cycle. J Mol Biol. 2020;432(12):3515-3524.
21 K Shirato, S Sato. Macrophage meets the circadian clock: implication of the circadian clock in the role of macrophages in acute lower respiratory tract infection. Front Cell Infect Microbiol. 2022;12:826738.
22 P Dierickx, K Zhu, BJ Carpenter, et al. Circadian REV-ERBs repress E4bp4 to activate NAMPT-dependent NAD(+) biosynthesis and sustain cardiac function. Nat Cardiovasc Res. 2022;1(1):45-58.
23 Q Wang, M Colonna. Keeping time in group 3 innate lymphoid cells. Nat Rev Immunol. 2020;20(12):720-726.
24 A Nakao. Circadian regulation of the biology of allergic disease: clock disruption can promote allergy. Front Immunol. 2020;11:1237.
25 J Giebfried, A Lorentz. Relationship between the biological clock and inflammatory bowel disease. Clocks Sleep. 2023;5(2):260-275.
26 P Nathan, JE Gibbs, GE Rainger, M Chimen. Changes in circadian rhythms dysregulate inflammation in ageing: focus on leukocyte trafficking. Front Immunol. 2021;12:673405.
27 GA Timmons, JR O'Siorain, OD Kennedy, AM Curtis, JO Early. Innate rhythms: clocks at the center of monocyte and macrophage function. Front Immunol. 2020;11:1743.
28 Q Wang, L Li, C Li, et al. Circadian protein CLOCK modulates regulatory B cell functions of nurses engaging day-night shift rotation. Cell Signal. 2022;96:110362.
29 N Cermakian, N Labrecque. Regulation of cytotoxic CD8+ T cells by the circadian clock. J Immunol. 2023;210(1):12-18.
30 J Habbel, L Arnold, Y Chen, et al. Inflammation-driven activation of JAK/STAT signaling reversibly accelerates acute myeloid leukemia in vitro. Blood Adv. 2020;4(13):3000-3010.
31 A Salas, C Hernandez-Rocha, M Duijvestein, et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(6):323-337.
32 HE Sabaawy, BM Ryan, H Khiabanian, SR Pine. JAK/STAT of all trades: linking inflammation with cancer development, tumor progression and therapy resistance. Carcinogenesis. 2021;42(12):1411-1419.
33 Q Dong, Y Jie, J Ma, C Li, T Xin, D Yang. Renal tubular cell death and inflammation response are regulated by the MAPK-ERK-CREB signaling pathway under hypoxia-reoxygenation injury. J Recept Signal Transduct Res. 2019;39(5-6):383-391.
34 T Behl, T Upadhyay, S Singh, et al. Polyphenols targeting MAPK mediated oxidative stress and inflammation in rheumatoid arthritis. Molecules. 2021;26(21):6570.
35 L Barnabei, E Laplantine, W Mbongo, F Rieux-Laucat, R Weil. NF-kappaB: at the borders of autoimmunity and inflammation. Front Immunol. 2021;12:716469.
36 T Zhang, C Ma, Z Zhang, H Zhang, H Hu. NF-kappaB signaling in inflammation and cancer. MedComm. 2021;2(4):618-653.
37 AB Kunnumakkara, B Shabnam, S Girisa, et al. Inflammation, NF-kappaB, and chronic diseases: how are they linked? Crit Rev Immunol. 2020;40(1):1-39.
38 MR Zinatizadeh, B Schock, GM Chalbatani, PK Zarandi, SA Jalali, SR Miri. The nuclear factor kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2021;8(3):287-297.
39 H Ma, M Zhou, W Duan, L Chen, L Wang, P Liu. Anemoside B4 prevents acute ulcerative colitis through inhibiting of TLR4/NF-kappaB/MAPK signaling pathway. Int Immunopharmacol. 2020;87:106794.
40 RPH De Maeyer, RC van de Merwe, R Louie, et al. Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly. Nat Immunol. 2020;21(6):615-625.
41 L Wang, Y Hu, B Song, Y Xiong, J Wang, D Chen. Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflamm Res. 2021;70(7):753-764.
42 SM Haftcheshmeh, M Abedi, K Mashayekhi, et al. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: focus on NF-kappaB, JAK/STAT, and MAPK signaling pathways. Phytother Res. 2022;36(3):1216-1230.
43 KB Megha, X Joseph, V Akhil, PV Mohanan. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine. 2021;91:153712.
44 S Yadav, A Dwivedi, A Tripathi. Biology of macrophage fate decision: implication in inflammatory disorders. Cell Biol Int. 2022;46(10):1539-1556.
45 D Bruni, HK Angell, J Galon. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20(11):662-680.
46 KJ Hiam-Galvez, BM Allen, MH Spitzer. Systemic immunity in cancer. Nat Rev Cancer. 2021;21(6):345-359.
47 A Ahmed, SWG Tait. Targeting immunogenic cell death in cancer. Mol Oncol. 2020;14(12):2994-3006.
48 T Yue, Y Shi, S Luo, J Weng, Y Wu, X Zheng. The role of inflammation in immune system of diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Front Immunol. 2022;13:1055087.
49 TN Golden, RA Simmons. Immune dysfunction in developmental programming of type 2 diabetes mellitus. Nat Rev Endocrinol. 2021;17(4):235-245.
50 C Tang, Y Wang, D Chen, et al. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int. 2023;172:113192.
51 S Riedel, C Pheiffer, R Johnson, J Louw, CJF Muller. Intestinal barrier function and immune homeostasis are missing links in obesity and type 2 diabetes development. Front Endocrinol (Lausanne). 2021;12:833544.
52 CM Larabee, OC Neely, AI Domingos. Obesity: a neuroimmunometabolic perspective. Nat Rev Endocrinol. 2020;16(1):30-43.
53 M Li, Z Chen, T Jiang, et al. Circadian rhythm-associated clinical relevance and Tumor Microenvironment of Non-small Cell Lung Cancer. J Cancer. 2021;12(9):2582-2597.
54 CA Ramos, C Ouyang, Y Qi, et al. A Non-canonical function of BMAL1 metabolically limits obesity-promoted triple-negative breast cancer. iScience. 2020;23(2):100839.
55 L Zhou, Z Luo, Z Li, Q Huang. Circadian clock is associated with tumor microenvironment in kidney renal clear cell carcinoma. Aging. 2020;12(14):14620-14632.
56 P Shivshankar, B Fekry, K Eckel-Mahan, RA Wetsel. Circadian clock and complement immune system-complementary control of physiology and pathology? Front Cell Infect Microbiol. 2020;10:418.
57 LE Hand, KJ Gray, SH Dickson, et al. Regulatory T cells confer a circadian signature on inflammatory arthritis. Nat Commun. 2020;11(1):1658.
58 H Waddell, TJ Stevenson, DJ Mole. The role of the circadian rhythms in critical illness with a focus on acute pancreatitis. Heliyon. 2023;9(4):e15335.
59 P Carvalho Cabral, K Tekade, SK Stegeman, M Olivier, N Cermakian. The involvement of host circadian clocks in the regulation of the immune response to parasitic infections in mammals. Parasite Immunol. 2022;44(3):e12903.
60 M Felten, S Ferencik, LG Teixeira Alves, et al. Ventilator-induced lung injury is modulated by the circadian clock. Am J Respir Crit Care Med. 2023;207(11):1464-1474.
61 JA Haspel, R Anafi, MK Brown, et al. Perfect timing: circadian rhythms, sleep, and immunity—an NIH workshop summary. JCI Insight. 2020;5(1):e131487.
62 S Barik. Molecular interactions between pathogens and the circadian clock. Int J Mol Sci. 2019;20(23):5824.
63 G Mazzoccoli, M Vinciguerra, A Carbone, A Relogio. The circadian clock, the immune system, and viral infections: the intricate relationship between biological time and host-virus interaction. Pathogens. 2020;9(2):83.
64 DB Boivin, P Boudreau, A Kosmadopoulos. Disturbance of the circadian system in shift work and its health impact. J Biol Rhythms. 2022;37(1):3-28.
65 B Colombini, M Dinu, E Murgo, et al. Ageing and low-level chronic inflammation: the role of the biological clock. Antioxidants. 2022;11(11):2228.
66 GB Kitchen, PS Cunningham, TM Poolman, et al. The clock gene Bmal1 inhibits macrophage motility, phagocytosis, and impairs defense against pneumonia. Proc Natl Acad Sci U S A. 2020;117(3):1543-1551.
67 M Keller, J Mazuch, U Abraham, et al. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A. 2009;106(50):21407-21412.
68 VP Annamneedi, JW Park, GS Lee, TJ Kang. Cell autonomous circadian systems and their relation to inflammation. Biomol Ther (Seoul). 2021;29(1):31-40.
69 EJ Collins, MP Cervantes-Silva, GA Timmons, JR O'Siorain, AM Curtis, JM Hurley. Post-transcriptional circadian regulation in macrophages organizes temporally distinct immunometabolic states. Genome Res. 2021;31(2):171-185.
70 P Honzlova, A Sumova. Metabolic regulation of the circadian clock in classically and alternatively activated macrophages. Immunol Cell Biol. 2023;101(5):428-443.
71 MA Guzman-Ruiz, NN Guerrero-Vargas, A Lagunes-Cruz, et al. Circadian modulation of microglial physiological processes and immune responses. Glia. 2023;71(2):155-167.
72 LK Fonken, MG Frank, MM Kitt, RM Barrientos, LR Watkins, SF Maier. Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun. 2015;45:171-179.
73 I Aiello, MLM Fedele, F Roman, et al. Circadian disruption promotes tumor-immune microenvironment remodeling favoring tumor cell proliferation. Sci Adv. 2020;6(42):eaaz4530.
74 E Vieira, GG Mirizio, GR Barin, RV de Andrade, NFS Nimer, L La Sala. Clock genes, inflammation and the immune system-implications for diabetes, obesity and neurodegenerative diseases. Int J Mol Sci. 2020;21(24):9743.
75 XL Wang, SEC Wolff, N Korpel, et al. Deficiency of the circadian clock gene bmal1 reduces microglial immunometabolism. Front Immunol. 2020;11:586399.
76 P Chen, WH Hsu, A Chang, et al. Circadian regulator CLOCK recruits immune-suppressive microglia into the GBM tumor microenvironment. Cancer Discov. 2020;10(3):371-381.
77 JH Jang, HW Shin, JM Lee, HW Lee, EC Kim, SH Park. An overview of pathogen recognition receptors for innate immunity in dental pulp. Mediators Inflamm. 2015;2015:794143.
78 B Li, D Li, H Ni, et al. The circadian clock regulator Bmal1 affects traumatic brain injury in rats through the p38 MAPK signalling pathway. Brain Res Bull. 2022;178:17-28.
79 JH Lee, A Sancar. Regulation of apoptosis by the circadian clock through NF-kappaB signaling. Proc Natl Acad Sci U S A. 2011;108(29):12036-12041.
80 J Lee, HJ Sul, H Choi, DH Oh, M Shong. Loss of thyroid gland circadian PER2 rhythmicity in aged mice and its potential association with thyroid cancer development. Cell Death Dis. 2022;13(10):898.
81 R Pick, W He, CS Chen, C Scheiermann. Time-of-Day-Dependent trafficking and function of leukocyte subsets. Trends Immunol. 2019;40(6):524-537.
82 K Ella, R Csepanyi-Komi, K Kaldi. Circadian regulation of human peripheral neutrophils. Brain Behav Immun. 2016;57:209-221.
83 M Casanova-Acebes, C Pitaval, LA Weiss, et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell. 2013;153(5):1025-1035.
84 B Malengier-Devlies, M Metzemaekers, C Wouters, P Proost, P Matthys. Neutrophil homeostasis and emergency granulopoiesis: the example of systemic juvenile idiopathic arthritis. Front Immunol. 2021;12:766620.
85 C Wyse, G O'Malley, AN Coogan, S McConkey, DJ Smith. Seasonal and daytime variation in multiple immune parameters in humans: evidence from 329,261 participants of the UK Biobank cohort. iScience. 2021;24(4):102255.
86 A Aroca-Crevillen, JM Adrover, A Hidalgo. Circadian features of neutrophil biology. Front Immunol. 2020;11:576.
87 O Nuri Pamuk, S Hasni, et al. Morning stiffness and neutrophil circadian disarming: comment on the article by Orange et al. Arthritis Rheumatol. 2021;73(2):356-357.
88 S Ovadia, A Ozcan, A Hidalgo. The circadian neutrophil, inside-out. J Leukoc Biol. 2023;113(6):555-566.
89 V Jerigova, M Zeman, M Okuliarova. Circadian disruption and consequences on innate immunity and inflammatory response. Int J Mol Sci. 2022;23(22):13722.
90 JM Adrover, C Del Fresno, G Crainiciuc, et al. A neutrophil timer coordinates immune defense and vascular protection. Immunity. 2019;51(5):966-967.
91 C Martin, PC Burdon, G Bridger, JC Gutierrez-Ramos, TJ Williams, SM Rankin. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity. 2003;19(4):583-593.
92 K De Filippo, SM Rankin. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Invest. 2018;48(2):e12949.
93 W He, S Holtkamp, SM Hergenhan, et al. Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues. Immunity. 2018;49(6):1175-1190. e1177.
94 AC Silver, A Arjona, WE Walker, E Fikrig. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity. 2012;36(2):251-261.
95 M Amir, S Campbell, TM Kamenecka, LA Solt. Pharmacological modulation and genetic deletion of REV-ERBalpha and REV-ERBbeta regulates dendritic cell development. Biochem Biophys Res Commun. 2020;527(4):1000-1007.
96 MP Cervantes-Silva, RG Carroll, MM Wilk, et al. The circadian clock influences T cell responses to vaccination by regulating dendritic cell antigen processing. Nat Commun. 2022;13(1):7217.
97 SJ Holtkamp, LM Ince, C Barnoud, et al. Circadian clocks guide dendritic cells into skin lymphatics. Nat Immunol. 2021;22(11):1375-1381.
98 T Bollinger, A Leutz, A Leliavski, et al. Circadian clocks in mouse and human CD4+ T cells. PLoS One. 2011;6(12):e29801.
99 T Bollinger, A Bollinger, L Skrum, S Dimitrov, T Lange, W Solbach. Sleep-dependent activity of T cells and regulatory T cells. Clin Exp Immunol. 2009;155(2):231-238.
100 D Druzd, O Matveeva, L Ince, et al. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity. 2017;46(1):120-132.
101 X Yu, D Rollins, KA Ruhn, et al. TH17 cell differentiation is regulated by the circadian clock. Science. 2013;342(6159):727-730.
102 J Born, T Lange, K Hansen, M Molle, HL Fehm. Effects of sleep and circadian rhythm on human circulating immune cells. J Immunol. 1997;158(9):4454-4464.
103 T Abo, T Kawate, K Itoh, K Kumagai. Studies on the bioperiodicity of the immune response. I. Circadian rhythms of human T, B, and K cell traffic in the peripheral blood. J Immunol. 1981;126(4):1360-1363.
104 AC Silver, A Arjona, ME Hughes, MN Nitabach, E Fikrig. Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behav Immun. 2012;26(3):407-413.
105 Q Cao, X Zhao, J Bai, et al. Circadian clock cryptochrome proteins regulate autoimmunity. Proc Natl Acad Sci U S A. 2017;114(47):12548-12553.
106 IS Aziz, AM McMahon, D Friedman, I Rabinovich-Nikitin, LA Kirshenbaum, TA Martino. Circadian influence on inflammatory response during cardiovascular disease. Curr Opin Pharmacol. 2021;57:60-70.
107 Y Sun, Z Yang, Z Niu, et al. MOP3, a component of the molecular clock, regulates the development of B cells. Immunology. 2006;119(4):451-460.
108 M Austin Taylor, M Bennett, V Kumar, JD Schatzle. Functional defects of NK cells treated with chloroquine mimic the lytic defects observed in perforin-deficient mice. J Immunol. 2000;165(9):5048-5053.
109 A Arjona, N Boyadjieva, DK Sarkar. Circadian rhythms of granzyme B, perforin, IFN-gamma, and NK cell cytolytic activity in the spleen: effects of chronic ethanol. J Immunol. 2004;172(5):2811-2817.
110 P Bourin, I Mansour, C Doinel, R Roue, P Rouger, F Levi. Circadian rhythms of circulating NK cells in healthy and human immunodeficiency virus-infected men. Chronobiol Int. 1993;10(4):298-305.
111 A Arjona, DK Sarkar. Evidence supporting a circadian control of natural killer cell function. Brain Behav Immun. 2006;20(5):469-476.
112 RW Logan, O Wynne, D Levitt, D Price, DK Sarkar. Altered circadian expression of cytokines and cytolytic factors in splenic natural killer cells of Per1(-/-) mutant mice. J Interferon Cytokine Res. 2013;33(3):108-114.
113 X Zeng, C Liang, J Yao. Chronic shift-lag promotes NK cell ageing and impairs immunosurveillance in mice by decreasing the expression of CD122. J Cell Mol Med. 2020;24(24):14583-14595.
114 RW Logan, C Zhang, S Murugan, et al. Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol. 2012;188(6):2583-2591.
115 F Teng, J Goc, L Zhou, et al. A circadian clock is essential for homeostasis of group 3 innate lymphoid cells in the gut. Sci Immunol. 2019;4(40):eaax1215.
116 Q Wang, ML Robinette, C Billon, et al. Circadian rhythm-dependent and circadian rhythm-independent impacts of the molecular clock on type 3 innate lymphoid cells. Sci Immunol. 2019;4(40):eaay7501.
117 JC Nussbaum, SJ Van Dyken, J von Moltke, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502(7470):245-248.
118 J Gong, W Tu, J Liu, D Tian. Hepatocytes: a key role in liver inflammation. Front Immunol. 2022;13:1083780.
119 MS Desruisseaux, ME Nagajyothi Trujillo, HB Tanowitz, PE Scherer. Adipocyte, adipose tissue, and infectious disease. Infect Immun. 2007;75(3):1066-1078.
120 I Harvey, A Boudreau, JM Stephens. Adipose tissue in health and disease. Open Biol. 2020;10(12):200291.
121 C Andrews, MH McLean, SK Durum. Cytokine tuning of intestinal epithelial function. Front Immunol. 2018;9:1270.
122 D Guan, Y Xiong, TM Trinh, et al. The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science. 2020;369(6509):1388-1394.
123 M Zhao, H Zhao, J Deng, L Guo, B Wu. Role of the CLOCK protein in liver detoxification. Br J Pharmacol. 2019;176(24):4639-4652.
124 D Guan, H Bae, D Zhou, et al. Hepatocyte SREBP signaling mediates clock communication within the liver. J Clin Invest. 2023;133(8):e163018.
125 Y Zhou, B Dong, KH Kim, et al. Vitamin D receptor activation in liver macrophages protects against hepatic endoplasmic reticulum stress in mice. Hepatology. 2020;71(4):1453-1466.
126 B Dong, Y Zhou, W Wang, et al. Vitamin D receptor activation in liver macrophages ameliorates hepatic inflammation, steatosis, and insulin resistance in mice. Hepatology. 2020;71(5):1559-1574.
127 I Heyde, K Begemann, H Oster. Contributions of white and brown adipose tissues to the circadian regulation of energy metabolism. Endocrinology. 2021;162(3):bqab009.
128 A Shostak, J Meyer-Kovac, H Oster. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes. 2013;62(7):2195-2203.
129 AL Hunter, CE Pelekanou, NJ Barron, et al. Adipocyte NR1D1 dictates adipose tissue expansion during obesity. Elife. 2021;10:e63324.
130 X Xiong, W Li, R Liu, P Saha, V Yechoor, K Ma. Circadian clock control of MRTF/SRF pathway suppresses beige adipocyte thermogenic recruitment. J Mol Cell Biol. 2023;14(12):mjac079.
131 S Subramanian, H Geng, XD Tan. Cell death of intestinal epithelial cells in intestinal diseases. Sheng Li Xue Bao. 2020;72(3):308-324.
132 K Parasram, P Karpowicz. Time after time: circadian clock regulation of intestinal stem cells. Cell Mol Life Sci. 2020;77(7):1267-1288.
133 Y Tian, D Zhang. Biological clock and inflammatory bowel disease review: from the standpoint of the intestinal barrier. Gastroenterol Res Pract. 2022;2022:2939921.
134 K Stokes, A Cooke, H Chang, DR Weaver, DT Breault, P Karpowicz. The circadian clock gene BMAL1 coordinates intestinal regeneration. Cell Mol Gastroenterol Hepatol. 2017;4(1):95-114.
135 J Pacha, A Sumova. Circadian regulation of epithelial functions in the intestine. Acta Physiol. 2013;208(1):11-24.
136 K Parasram, N Bernardon, M Hammoud, et al. Intestinal stem cells exhibit conditional circadian clock function. Stem Cell Reports. 2018;11(5):1287-1301.
137 F Yu, Z Wang, T Zhang, et al. Deficiency of intestinal Bmal1 prevents obesity induced by high-fat feeding. Nat Commun. 2021;12(1):5323.
138 F Yu, T Zhang, C Zhou, et al. The circadian clock gene Bmal1 controls intestinal exporter MRP2 and drug disposition. Theranostics. 2019;9(10):2754-2767.
139 F Fagiani, D Di Marino, A Romagnoli, et al. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther. 2022;7(1):41.
140 S Rius-Perez, S Perez, P Marti-Andres, M Monsalve, J Sastre. Nuclear factor kappa B signaling complexes in acute inflammation. Antioxid Redox Signal. 2020;33(3):145-165.
141 S Wang, Y Lin, F Li, et al. An NF-kappaB-driven lncRNA orchestrates colitis and circadian clock. Sci Adv. 2020;6(42):eabb5202.
142 C Fontaine, E Rigamonti, B Pourcet, et al. The nuclear receptor Rev-erbalpha is a liver X receptor (LXR) target gene driving a negative feedback loop on select LXR-induced pathways in human macrophages. Mol Endocrinol. 2008;22(8):1797-1811.
143 Y Oishi, S Hayashi, T Isagawa, et al. Bmal1 regulates inflammatory responses in macrophages by modulating enhancer RNA transcription. Sci Rep. 2017;7(1):7086.
144 J Wang, S Li, X Li, et al. Circadian protein BMAL1 promotes breast cancer cell invasion and metastasis by up-regulating matrix metalloproteinase9 expression. Cancer Cell Int. 2019;19:182.
145 ML Spengler, KK Kuropatwinski, M Comas, et al. Core circadian protein CLOCK is a positive regulator of NF-kappaB-mediated transcription. Proc Natl Acad Sci U S A. 2012;109(37):E2457-E2465.
146 R Narasimamurthy, M Hatori, SK Nayak, F Liu, S Panda, IM Verma. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci U S A. 2012;109(31):12662-12667.
147 G Chen, H Zhao, S Ma, et al. Circadian rhythm protein bmal1 modulates cartilage gene expression in temporomandibular joint osteoarthritis via the MAPK/ERK pathway. Front Pharmacol. 2020;11:527744.
148 K Kim, JH Kim, I Kim, S Seong, N Kim. Rev-erbalpha negatively regulates osteoclast and osteoblast differentiation through p38 MAPK signaling pathway. Mol Cells. 2020;43(1):34-47.
149 SM Kim, JE Choi, W Hur, et al. RAR-related orphan receptor gamma (ROR-gamma) mediates epithelial-mesenchymal transition of hepatocytes during hepatic fibrosis. J Cell Biochem. 2017;118(8):2026-2036.
150 CS Goldsmith, D Bell-Pedersen. Diverse roles for MAPK signaling in circadian clocks. Adv Genet. 2013;84:1-39.
151 H Wang, YJBC Fu. NR1D1 suppressed the growth of ovarian cancer by abrogating the JAK/STAT3 signaling pathway. BMC Cancer. 2021;21(1):871.
152 W Luo, AJC Sehgal. Regulation of circadian behavioral output via a microRNA-JAK/STAT circuit. Cell. 2012;148(4):765-779.
153 N Mehta, HYM Cheng. Micro-managing the circadian clock: the role of microRNAs in biological timekeeping. J Mol Biol. 2013;425(19):3609-3624.
154 Y Xie, Q Tang, G Chen, et al. New insights into the circadian rhythm and its related diseases. Front Physiol. 2019;10:682.
155 Y Lin, L Lin, L Gao, S Wang, B Wu. Rev-erbalpha regulates hepatic ischemia-reperfusion injury in mice. Biochem Biophys Res Commun. 2020;529(4):916-921.
156 J Liu, G Malkani, X Shi, et al. The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect Immun. 2006;74(8):4750-4756.
157 C Colquhoun, M Duncan, GJD Grant. Inflammatory bowel diseases: host-microbial-environmental interactions in dysbiosis. Diseases. 2020;8(2):13.
158 Z Zhou, Y Lin, L Gao, Z Yang, S Wang, B Wu. Circadian pharmacological effects of berberine on chronic colitis in mice: role of the clock component Rev-erbalpha. Biochem Pharmacol. 2020;172:113773.
159 A Sobolewska-Wlodarczyk, M Wlodarczyk, J Szemraj, K Stec-Michalska, J Fichna, M Wisniewska-Jarosinska. Circadian rhythm abnormalities—association with the course of inflammatory bowel disease. Pharmacol Rep. 2016;68(4):847-851.
160 JL Liu, CY Wang, TY Cheng, et al. Circadian clock disruption suppresses PDL1(+) intraepithelial B cells in experimental colitis and colitis-associated colorectal cancer. Cell Mol Gastroenterol Hepatol. 2021;12(1):251-276.
161 SB Jochum, PA Engen, M Shaikh, et al. Colonic epithelial circadian disruption worsens dextran sulfate sodium-induced colitis. Inflamm Bowel Dis. 2023;29(3):444-457.
162 DI Krijbolder, F Wouters, E van Mulligen, AHM van der Helmvan Mil. Morning stiffness precedes the development of rheumatoid arthritis and associates with systemic and subclinical joint inflammation in arthralgia patients. Rheumatology. 2022;61(5):2113-2118.
163 H Boeth, R Biesen, J Hollnagel, et al. Quantification of morning stiffness to assess disease activity and treatment effects in rheumatoid arthritis. Rheumatology. 2021;60(11):5282-5291.
164 DE Orange, NE Blachere, EF DiCarlo, et al. Rheumatoid arthritis morning stiffness is associated with synovial fibrin and neutrophils. Arthritis Rheumatol. 2020;72(4):557-564.
165 X Wu, X Liu, Z Jing, Y Chen, H Liu, W Ma. Moxibustion benignantly regulates circadian rhythm of REV-ERBalpha in RA rats. Am J Transl Res. 2020;12(5):1459-1468.
166 N Kikyo. Circadian regulation of macrophages and osteoclasts in rheumatoid arthritis. Int J Mol Sci. 2023;24(15):12307.
167 A Hashiramoto, T Yamane, K Tsumiyama, et al. Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha. J Immunol. 2010;184(3):1560-1565.
168 A Kulkarni, M Demory-Beckler, MM Kesselman. The role of clock genes in maintaining circadian rhythm and rheumatoid arthritis pathophysiology. Cureus. 2023;15(5):e39104.
169 RT Rao, KK Pierre, N Schlesinger, IP Androulakis. The potential of circadian realignment in rheumatoid arthritis. Crit Rev Biomed Eng. 2016;44(3):177-191.
170 S Davis, DK Mirick, RG Stevens. Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst. 2001;93(20):1557-1562.
171 G Mazzoccoli, L Miele, G Marrone, T Mazza, M Vinciguerra, A Grieco. A role for the biological clock in liver cancer. Cancers. 2019;11(11):1778.
172 AJ Lawther, AJK Phillips, NC Chung, et al. Disrupting circadian rhythms promotes cancer-induced inflammation in mice. Brain Behav Immun Health. 2022;21:100428.
173 YM Lin, JH Chang, KT Yeh, et al. Disturbance of circadian gene expression in hepatocellular carcinoma. Mol Carcinog. 2008;47(12):925-933.
174 H Taniguchi, AF Fernandez, F Setien, et al. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res. 2009;69(21):8447-8454.
175 B Fekry, A Ribas-Latre, RV Drunen, et al. Hepatic circadian and differentiation factors control liver susceptibility for fatty liver disease and tumorigenesis. FASEB J. 2022;36(9):e22482.
176 F Battaglin, P Chan, Y Pan, et al. Clocking cancer: the circadian clock as a target in cancer therapy. Oncogene. 2021;40(18):3187-3200.
177 V Koliaraki, A Prados, M Armaka, G Kollias. The mesenchymal context in inflammation, immunity and cancer. Nat Immunol. 2020;21(9):974-982.
178 H Zhao, L Wu, G Yan, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6(1):263.
179 FR Greten, SI Grivennikov. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27-41.
180 C Wang, C Barnoud, M Cenerenti, et al. Dendritic cells direct circadian anti-tumour immune responses. Nature. 2023;614(7946):136-143.
181 N Sang, RC Gao, MY Zhang, ZZ Wu, ZG Wu, GC Wu. Causal relationship between sleep traits and risk of systemic lupus erythematosus: a two-sample mendelian randomization study. Front Immunol. 2022;13:918749.
182 WA Awuah, H Huang, J Kalmanovich, et al. Circadian rhythm in systemic autoimmune conditions: potential of chrono-immunology in clinical practice: a narrative review. Medicine. 2023;102(32):e34614.
183 YL Dan, CN Zhao, YM Mao, et al. Association of PER2 gene single nucleotide polymorphisms with genetic susceptibility to systemic lupus erythematosus. Lupus. 2021;30(5):734-740.
184 KA Young, ME Munroe, JB Harley, et al. Less than 7 hours of sleep per night is associated with transitioning to systemic lupus erythematosus. Lupus. 2018;27(9):1524-1531.
185 RK Alexander, YH Liou, NH Knudsen, et al. Bmal1 integrates mitochondrial metabolism and macrophage activation. Elife. 2020;9:e54090.
186 JO Early, D Menon, CA Wyse, et al. Circadian clock protein BMAL1 regulates IL-1beta in macrophages via NRF2. Proc Natl Acad Sci U S A. 2018;115(36):E8460-E8468.
187 Z Wang, M Zhao, J Yin, et al. E4BP4-mediated inhibition of T follicular helper cell differentiation is compromised in autoimmune diseases. J Clin Invest. 2020;130(7):3717-3733.
188 KD Nguyen, SJ Fentress, Y Qiu, K Yun, JS Cox, A Chawla. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science. 2013;341(6153):1483-1488.
189 GK Paschos, S Ibrahim, WL Song, et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med. 2012;18(12):1768-1777.
190 Y Lin, S Wang, L Gao, et al. Oscillating lncRNA Platr4 regulates NLRP3 inflammasome to ameliorate nonalcoholic steatohepatitis in mice. Theranostics. 2021;11(1):426-444.
191 E Maury, B Navez, SM Brichard. Circadian clock dysfunction in human omental fat links obesity to metabolic inflammation. Nat Commun. 2021;12(1):2388.
192 S Garbarino, P Lanteri, NL Bragazzi, N Magnavita, E Scoditti. Role of sleep deprivation in immune-related disease risk and outcomes. Commun Biol. 2021;4(1):1304.
193 MR Irwin. Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol. 2019;19(11):702-715.
194 B Ragnoli, P Pochetti, P Pignatti, et al. Sleep deprivation, immune suppression and SARS-CoV-2 infection. Int J Environ Res Public Health. 2022;19(2):904.
195 L Jiao, Z Duan, H Sangi-Haghpeykar, L Hale, DL White, HB El-Serag. Sleep duration and incidence of colorectal cancer in postmenopausal women. Br J Cancer. 2013;108(1):213-221.
196 M Kakizaki, K Inoue, S Kuriyama, et al. Sleep duration and the risk of prostate cancer: the Ohsaki Cohort Study. Br J Cancer. 2008;99(1):176-178.
197 S Hurley, D Goldberg, L Bernstein, P Reynolds. Sleep duration and cancer risk in women. Cancer Causes Control. 2015;26(7):1037-1045.
198 M Kakizaki, S Kuriyama, T Sone, et al. Sleep duration and the risk of breast cancer: the Ohsaki Cohort Study. Br J Cancer. 2008;99(9):1502-1505.
199 BHP De Lorenzo, EBRR Novaes, T Paslar Leal, et al. Chronic sleep restriction impairs the antitumor immune response in mice. Neuroimmunomodulation. 2018;25(2):59-67.
200 B Qin, Y Deng. Overexpression of circadian clock protein cryptochrome (CRY) 1 alleviates sleep deprivation-induced vascular inflammation in a mouse model. Immunol Lett. 2015;163(1):76-83.
201 Y Shen, M Endale, W Wang, et al. NF-kappaB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1. PLoS Genet. 2021;17(11):e1009933.
PDF

Accesses

Citations

Detail

Sections
Recommended

/