Reticulon 3 deficiency ameliorates post-myocardial infarction heart failure by alleviating mitochondrial dysfunction and inflammation

Bingchao Qi, Tiantian Li, Haixia Luo, Lang Hu, Renqian Feng, Di Wang, Tingwei Peng, Gaotong Ren, Dong Guo, Mingchuan Liu, Qiuhe Wang, Mingming Zhang(), Yan Li()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (3) : e503. DOI: 10.1002/mco2.503
ORIGINAL ARTICLE

Reticulon 3 deficiency ameliorates post-myocardial infarction heart failure by alleviating mitochondrial dysfunction and inflammation

  • Bingchao Qi, Tiantian Li, Haixia Luo, Lang Hu, Renqian Feng, Di Wang, Tingwei Peng, Gaotong Ren, Dong Guo, Mingchuan Liu, Qiuhe Wang, Mingming Zhang(), Yan Li()
Author information +
History +

Abstract

Multiple molecular mechanisms are involved in the development of heart failure (HF) after myocardial infarction (MI). However, interventions targeting these pathological processes alone remain clinically ineffective. Therefore, it is essential to identify new therapeutic targets for alleviating cardiac dysfunction after MI. Here, gain- and loss-of-function approaches were used to investigate the role of reticulon 3 (RTN3) in HF after MI. We found that RTN3 was elevated in the myocardium of patients with HF and mice with MI. Cardiomyocyte-specific RTN3 overexpression decreased systolic function in mice under physiological conditions and exacerbated the development of HF induced by MI. Conversely, RTN3 knockout alleviated cardiac dysfunction after MI. Mechanistically, RTN3 bound and mediated heat shock protein beta-1 (HSPB1) translocation from the cytosol to the endoplasmic reticulum. The reduction of cytosolic HSPB1 was responsible for the elevation of TLR4, which impaired mitochondrial function and promoted inflammation through toll-like receptor 4 (TLR4)/peroxisome proliferator-activated receptor gamma coactivator-1 alpha(PGC-1α) and TLR4/Nuclear factor-kappa B(NFκB) pathways, respectively. Furthermore, the HSPB1 inhibitor reversed the protective effect of RTN3 knockout on MI. Additionally, elevated plasma RTN3 level is associated with decreased cardiac function in patients with acute MI. This study identified RTN3 as a critical driver of HF after MI and suggests targeting RTN3 as a promising therapeutic strategy for MI and related cardiovascular diseases.

Keywords

heart failure / inflammation / mitochondrial function / myocardial infarction / reticulon 3

Cite this article

Download citation ▾
Bingchao Qi, Tiantian Li, Haixia Luo, Lang Hu, Renqian Feng, Di Wang, Tingwei Peng, Gaotong Ren, Dong Guo, Mingchuan Liu, Qiuhe Wang, Mingming Zhang, Yan Li. Reticulon 3 deficiency ameliorates post-myocardial infarction heart failure by alleviating mitochondrial dysfunction and inflammation. MedComm, 2024, 5(3): e503 https://doi.org/10.1002/mco2.503

References

1 GW Reed, JE Rossi, CP Cannon. Acute myocardial infarction. Lancet (London, England). 2017;389:197-210.
2 W Chen, W Bian, Y Zhou, J Zhang. Cardiac fibroblasts and myocardial regeneration. Front Bioeng Biotechnol. 2021;9:599928.
3 MA Laflamme, CE Murry. Heart regeneration. Nature. 2011;473:326-335.
4 MC Bahit, A Kochar, CB Granger. Post-myocardial infarction heart failure. JACC Heart Fail. 2018;6:179-186.
5 Y Gerber, SA Weston, M Enriquez-Sarano, C Berardi, AM Chamberlain, SM Manemann. Mortality associated with heart failure after myocardial infarction: a contemporary community perspective. Circ Heart Fail. 2016;9:e2460.
6 AM Walters, GAJ Porter, PS Brookes. Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res. 2012;111:1222-1236.
7 Q Zhang, L Wang, S Wang, et al. Signal transduct. Target Ther. 2022;7:78.
8 SD Prabhu, NG Frangogiannis. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119:91-112.
9 S Neubauer. The failing heart—an engine out of fuel. N Engl J Med. 2007;356:1140-1151.
10 B Zhou, R Tian. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018;128:3716-3726.
11 H Zhou, J Ren, S Toan, D Mui. Role of mitochondrial quality surveillance in myocardial infarction: from bench to bedside. Ageing Res Rev. 2021;66:101250.
12 M Nahrendorf, FK Swirski. Innate immune cells in ischaemic heart disease: does myocardial infarction beget myocardial infarction? Eur Heart J. 2016;37:868-872.
13 DL Mann. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res. 2002;91:988-998.
14 TT Cung, O Morel, G Cayla, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 2015;373:1021-1031.
15 S Huang, NG Frangogiannis. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol. 2018;175:1377-1400.
16 T Oertle, ME Schwab. Nogo and its paRTNers. Trends Cell Biol. 2003;13:187-194.
17 T Oertle, M Klinger, CA Stuermer, ME Schwab. A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J. 2003;17:1238-1247.
18 YS Yang, SM Strittmatter. The reticulons: a family of proteins with diverse functions. Genome Biol. 2007;8:234.
19 V Chiurchiù, M Maccarrone, A Orlacchio. The role of reticulons in neurodegenerative diseases. Neuromol Med. 2014;16:3-15.
20 ME Schwab. Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci. 2010;11:799-811.
21 E Kuang, Q Wan, X Li, H Xu, Q Liu, Y Qi. ER Ca2+ depletion triggers apoptotic signals for endoplasmic reticulum (ER) overload response induced by overexpressed reticulon 3 (RTN3/HAP). J Cell Physiol. 2005;204:549-559.
22 Y Li, B Chen, X Yang, et al. S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation. 2019;140:751-764.
23 Y Wang, J Liu, Q Kong, et al. Cardiomyocyte-specific deficiency of HSPB1 worsens cardiac dysfunction by activating NFκB-mediated leucocyte recruitment after myocardial infarction. Cardiovasc Res. 2019;115:154-167.
24 A Bastide, D Peretti, JRP Knight, et al. RTN3 is a novel cold-induced protein and mediates neuroprotective effects of RBM3. Curr Biol. 2017;27:638-650.
25 J Wojnacki, S Nola, P Bun, et al. Role of VAMP7-dependent secretion of reticulon 3 in neurite growth. Cell Rep. 2020;33:108536.
26 P Grumati, G Morozzi, S H?lper, et al. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. eLife. 2017;6:e25555. doi:
27 Y Chen, J Knupp, A Arunagiri, L Haataja, P Arvan, B Tsai. PGRMC1 acts as a size-selective cargo receptor to drive ER-phagic clearance of mutant prohormones. Nat Commun. 2021;12.
28 W He, Y Lu, I Qahwash, XY Hu, A Chang, R Yan. Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation. Nat Med. 2004;10:959-965.
29 S Song, Y Shi, W Wu, et al. Reticulon 3-mediated Chk2/p53 activation suppresses hepatocellular carcinogenesis and is blocked by hepatitis B virus. Gut. 2020;70(11):2159-2171. doi:
30 R Xiang, L Fan, H Huang, et al. Increased reticulon 3 (RTN3) leads to obesity and hypertriglyceridemia by interacting with heat shock protein family A (Hsp70) member 5 (HSPA5). Circulation. 2018;138:1828-1838.
31 A Hoshino, Y Mita, Y Okawa, et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial. Nat Commun. 2013;4:2308.
32 Y Li, Y Ma, L Song, et al. SIRT3 deficiency exacerbates p53/Parkin?mediated mitophagy inhibition and. Int J Mol Med. 2018;41:3517-3526.
33 R Lin, Z Su, X Tan, Y Su, Y Chen, X Shu. Effect of endoplasmic reticulum stress and autophagy in the regulation of post-infarct cardiac repair. Arch Med Res. 2018;49:576-582.
34 W You, X Min, X Zhang, et al. Cardiac-specific expression of heat shock protein 27 attenuated endotoxin-induced cardiac dysfunction and mortality in mice through a PI3K/Akt-dependent mechanism. Shock. 2009;32:108-117.
35 BF Kraemer, H Mannell, T Lamkemeyer, M Franz-Wachtel, S Lindemann. Heat-shock protein 27 (HSPB1) is upregulated and phosphorylated in human platelets during ST-elevation myocardial infarction. Int J Mol Sci. 2019;20(23):5968. doi:
36 JM Hollander, JL Martin, DD Belke, et al. Overexpression of wild-type heat shock protein 27 and a nonphosphorylatable heat shock protein 27 mutant protects against ischemia/reperfusion injury in a transgenic mouse model. Circulation. 2004;110:3544-3552.
37 FG Tahrir, D Langford, S Amini, T Mohseni Ahooyi, K Khalili. Mitochondrial quality control in cardiac cells: mechanisms and role in cardiac. J Cell Physiol. 2019;234:8122-8133.
38 C Chen, L Zhang, Z Jin, T Kasumov, Y Chen. Mitochondrial redox regulation and myocardial ischemia–reperfusion injury. Am J Physiol Cell Physiol. 2022;322:C12-C23.
39 N Ale-Agha, P Jakobs, C Goy, et al. Mitochondrial telomerase reverse transcriptase protects from myocardial. Circulation. 2021;144:1876-1890.
40 B Qi, L Song, L Hu, et al. Cardiac-specific overexpression of Ndufs1 ameliorates cardiac dysfunction after myocardial infarction by alleviating mitochondrial dysfunction and apoptosis. Exp Mol Med. 2022;54:946-960.
41 RE Brainard, HT Facundo. Cardiac hypertrophy drives PGC-1alpha suppression associated with enhanced O-glycosylation. Biochim Biophys Acta Mol Basis Dis. 2021;1867:166080.
42 AH Chaanine, LD Joyce, JM Stulak, et al. Mitochondrial morphology, dynamics, and function in human pressure overload or ischemic heart disease with preserved or reduced ejection fraction. Circ Heart Fail. 2019;12:e5131.
43 O Karkkainen, T Tuomainen, M Mutikainen, et al. Heart specific PGC-1alpha deletion identifies metabolome of cardiac restricted metabolic heart failure. Cardiovasc Res. 2019;115:107-118.
44 Z Guo, D Fan, F Liu, et al. NEU1 regulates mitochondrial energy metabolism and oxidative stress post-myocardial infarction in mice via the SIRT1/PGC-1 alpha axis. Front Cardiovasc Med. 2022;9:821317.
45 H Yan, H Wang, X Zhu, et al. Adeno-associated virus-mediated delivery of anti-miR-199a tough decoys attenuates cardiac hypertrophy by targeting PGC-1alpha. Molecular therapy. Nucleic Acids. 2021;23:406-417.
46 M Ding, N Feng, D Tang, et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through. J Pineal Res. 2018;65:e12491.
47 X Gao, DA White, AM Dart, X Du. Post-infarct cardiac rupture: recent insights on pathogenesis and therapeutic interventions. Pharmacol Therapeut. 2012;134:156-179.
48 Y Wang, H Hu, J Yin, et al. TLR4 participates in sympathetic hyperactivity Post-MI in the PVN by regulating. Redox Biol. 2019;24:101186.
49 JW Gordon, JA Shaw, LA Kirshenbaum. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res. 2011;108:1122-1132.
50 LF Chen, WC Greene. Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol. 2004;5:392-401.
51 T Hamid, SZ Guo, JR Kingery, X Xiang, B Dawn, SD Prabhu. Cardiomyocyte NF-κB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure. Cardiovasc Res. 2011;89:129-138.
52 SK Calderwood, A Murshid, J Gong. Heat shock proteins: conditional mediators of inflammation in tumor immunity. Front Immunol. 2012;3:75. doi:
53 C Shi, A Ulke-Lemée, J Deng, Z Batulan, ER O'Brien. Characterization of heat shock protein 27 in extracellular vesicles: a potential anti-inflammatory therapy. FASEB J. 2018;33:1617-1630.
54 G Caldieri, E Barbieri, G Nappo, et al. Reticulon 3-dependent ER-PM contact sites control EGFR nonclathrin endocytosis. Science. 2017;356:617-624.
55 Y Chen, R Xiang, S Zhao. The potential role of RTN3 in monocyte recruitment and atherosclerosis. Mol Cell Biochem. 2012;361:67070.
56 E Gao, YH Lei, X Shang, et al. A novel and efficient model of coronary artery ligation and myocardial infarction. Circ Res. 2010;107:1445-1453.
PDF

Accesses

Citations

Detail

Sections
Recommended

/