Genome-scale CRISPR–Cas9 screen identifies PAICS as a therapeutic target for EGFR wild-type non-small cell lung cancer

Yufeng Li1,2, Lingyun Zhu3, Jiaqi Mao3, Hongrui Zheng4, Ziyi Hu3, Suisui Yang3, Tianyu Mao1, Tingting Zhou3, Pingping Cao3, Hongshuai Wu3,5, Xuerong Wang5, Jing Wang3(), Fan Lin3,6,7(), Hua Shen1,2()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (3) : e483. DOI: 10.1002/mco2.483
ORIGINAL ARTICLE

Genome-scale CRISPR–Cas9 screen identifies PAICS as a therapeutic target for EGFR wild-type non-small cell lung cancer

  • Yufeng Li1,2, Lingyun Zhu3, Jiaqi Mao3, Hongrui Zheng4, Ziyi Hu3, Suisui Yang3, Tianyu Mao1, Tingting Zhou3, Pingping Cao3, Hongshuai Wu3,5, Xuerong Wang5, Jing Wang3(), Fan Lin3,6,7(), Hua Shen1,2()
Author information +
History +

Abstract

Epidermal growth factor receptor-targeted (EGFR-targeted) therapies show promise for non-small cell lung cancer (NSCLC), but they are ineffective in a third of patients who lack EGFR mutations. This underlines the need for personalized treatments for patients with EGFR wild-type NSCLC. A genome-wide CRISPR/Cas9 screen has identified the enzyme phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), which is vital in de novo purine biosynthesis and tumor development, as a potential drug target for EGFR wild-type NSCLC. We have further confirmed that PAICS expression is significantly increased in NSCLC tissues and correlates with poor patient prognosis. Knockdown of PAICS resulted in a marked reduction in both in vitro and in vivo proliferation of EGFR wild-type NSCLC cells. Additionally, PAICS silencing led to cell-cycle arrest in these cells, with genes involved in the cell cycle pathway being differentially expressed. Consistently, an increase in cell proliferation ability and colony number was observed in cells with upregulated PAICS in EGFR wild-type NSCLC. PAICS silencing also caused DNA damage and cell-cycle arrest by interacting with DNA repair genes. Moreover, decreased IMPDH2 activity and activated PI3K–AKT signaling were observed in NSCLC cells with EGFR mutations, which may compromise the effectiveness of PAICS knockdown. Therefore, PAICS plays an oncogenic role in EGFR wild-type NSCLC and represents a potential therapeutic target for this disease.

Keywords

cell cycle / DNA damage / EGFR wild-type NSCLC / PAICS

Cite this article

Download citation ▾
Yufeng Li, Lingyun Zhu, Jiaqi Mao, Hongrui Zheng, Ziyi Hu, Suisui Yang, Tianyu Mao, Tingting Zhou, Pingping Cao, Hongshuai Wu, Xuerong Wang, Jing Wang, Fan Lin, Hua Shen. Genome-scale CRISPR–Cas9 screen identifies PAICS as a therapeutic target for EGFR wild-type non-small cell lung cancer. MedComm, 2024, 5(3): e483 https://doi.org/10.1002/mco2.483

References

1 AP Szczepanski, N Tsuboyama, J Watanabe, R Hashizume, Z Zhao, L Wang. POU2AF2/C11orf53 functions as a coactivator of POU2F3 by maintaining chromatin accessibility and enhancer activity. Sci Adv. 2022;8(40):eabq2403.
2 H Sung, J Ferlay, RL Siegel, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.
3 JC Soria, Y Ohe, J Vansteenkiste, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113-125.
4 BJ Solomon, T Mok, DW Kim, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167-2177.
5 J Mazieres, G Zalcman, L Crino, et al. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J Clin Oncol. 2015;33(9):992-999.
6 FR Hirsch, GV Scagliotti, JL Mulshine, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389(10066):299-311.
7 NH Hanna, AG Robinson, S Temin, et al. Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO and OH (CCO) joint guideline update. J Clin Oncol. 2021;39(9):1040-1091.
8 D Planchard, S Popat, K Kerr, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(4):iv192-iv237. Suppl.
9 DS Ettinger, DE Wood, DL Aisner, et al. NCCN guidelines insights: non-small cell lung cancer, version 2.2021. J Natl Compr Canc Netw. 2021;19(3):254-266.
10 D Zhao, X Chen, N Qin, et al. The prognostic role of EGFR-TKIs for patients with advanced non-small cell lung cancer. Sci Rep. 2017;7:40374.
11 Q Wang, W Gao, F Gao, et al. Efficacy and acquired resistance of EGFR-TKI combined with chemotherapy as first-line treatment for Chinese patients with advanced non-small cell lung cancer in a real-world setting. BMC Cancer. 2021;21(1):602.
12 AC Tan, DSW Tan. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022;40(6):611-625.
13 FM Behan, F Iorio, G Picco, et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019;568(7753):511-516.
14 M Kodama, T Kodama, JY Newberg, et al. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc Natl Acad Sci USA. 2017;114(35):E7301-E7310.
15 S Lin, C Larrue, NK Scheidegger, et al. An in vivo CRISPR screening platform for prioritizing therapeutic targets in AML. Cancer Discov. 2022;12(2):432-449.
16 EM Kerek, CR Cromwell, BP Hubbard. Identification of drug resistance genes using a pooled lentiviral CRISPR/Cas9 screening approach. Methods Mol Biol. 2021;2381:227-242.
17 SX Li, YP Tong, XC Xie, et al. Octameric structure of the human bifunctional enzyme PAICS in purine biosynthesis. J Mol Biol. 2007;366(5):1603-1614.
18 M Meng, Y Chen, J Jia, L Li, S Yang. Knockdown of PAICS inhibits malignant proliferation of human breast cancer cell lines. Biol Res. 2018;51(1):24.
19 N Huang, C Xu, L Deng, et al. PAICS contributes to gastric carcinogenesis and participates in DNA damage response by interacting with histone deacetylase 1/2. Cell Death Dis. 2020;11(7):507.
20 B Chakravarthi, MT Goswami, SS Pathi, et al. Expression and role of PAICS, a de novo purine biosynthetic gene in prostate cancer. Prostate. 2018;78(9):693-694.
21 X Dai, Y Mei, X Chen, D Cai. ANLN and KDR are jointly prognostic of breast cancer survival and can be modulated for triple negative breast cancer control. Front Genet. 2019;10:790.
22 J Acosta, J Del Arco, ML Del Pozo, et al. Hypoxanthine-guanine phosphoribosyltransferase/adenylate kinase from Zobellia galactanivorans: a bifunctional catalyst for the synthesis of nucleoside-5'-mono-, di- and triphosphates. Front Bioeng Biotechnol. 2020;8:677.
23 G Galvez-Valdivieso, E Delgado-Garcia, M Diaz-Baena, et al. Biochemical and molecular characterization of PvNTD2, a nucleotidase highly expressed in nodules from Phaseolus vulgaris. Plants (Basel). 2020;9(2):171.
24 J Del Arco, J Fernandez-Lucas. Purine and pyrimidine salvage pathway in thermophiles: a valuable source of biocatalysts for the industrial production of nucleic acid derivatives. Appl Microbiol Biotechnol. 2018;102(18):7805-7820.
25 X Tong, F Zhao, CB Thompson. The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev. 2009;19(1):32-37.
26 A Batova, MB Diccianni, M Omura-Minamisawa, et al. Use of alanosine as a methylthioadenosine phosphorylase-selective therapy for T-cell acute lymphoblastic leukemia in vitro. Cancer Res. 1999;59(7):1492-1497.
27 K Takezawa, I Okamoto, S Tsukioka, et al. Identification of thymidylate synthase as a potential therapeutic target for lung cancer. Br J Cancer. 2010;103(3):354-361.
28 K Bhagat, N Kumar, H Kaur Gulati, et al. Dihydrofolate reductase inhibitors: patent landscape and phases of clinical development (2001-2021). Expert Opin Ther Pat. 2022;32(10):1079-1095.
29 Y Kobayashi, K Kumamoto, H Okayama, et al. Downregulation of PAICS due to loss of chromosome 4q is associated with poor survival in stage III colorectal cancer. PLoS One. 2021;16(2):e0247169.
30 B Du, Z Zhang, W Di, et al. PAICS is related to glioma grade and can promote glioma growth and migration. J Cell Mol Med. 2021;25(16):7720-7733.
31 S Agarwal, B Chakravarthi, HG Kim, et al. PAICS, a de novo purine biosynthetic enzyme, is overexpressed in pancreatic cancer and is involved in its progression. Transl Oncol. 2020;13(7):100776.
32 S Agarwal, B Chakravarthi, M Behring, et al. PAICS, a purine nucleotide metabolic enzyme, is involved in tumor growth and the metastasis of colorectal cancer. Cancers (Basel). 2020;12(4):772.
33 BV Chakravarthi, MT Goswami, SS Pathi, et al. Expression and role of PAICS, a de novo purine biosynthetic gene in prostate cancer. Prostate. 2017;77(1):10-21.
34 B Chakravarthi, MDC Rodriguez Pena, S Agarwal, et al. A role for de novo purine metabolic enzyme PAICS in bladder cancer progression. Neoplasia. 2018;20(9):894-904.
35 J Skerlova, J Unterlass, M Gottmann, et al. Crystal structures of human PAICS reveal substrate and product binding of an emerging cancer target. J Biol Chem. 2020;295(33):11656-11668.
36 CV Rao, C Xu, M Farooqui, Y Zhang, AS Asch, HY Yamada. Survival-critical genes associated with copy number alterations in lung adenocarcinoma. Cancers (Basel). 2021;13(11):2586.
37 S Zhou, Y Yan, X Chen, et al. Roles of highly expressed PAICS in lung adenocarcinoma. Gene. 2019;692:1-8.
38 MT Goswami, G Chen, BV Chakravarthi, et al. Role and regulation of coordinately expressed de novo purine biosynthetic enzymes PPAT and PAICS in lung cancer. Oncotarget. 2015;6(27):23445-23461.
39 X Tang, Y Wu, J Yang, W Zhu. Regulating COX10-AS1 /miR-142-5p / PAICS axis inhibits the proliferation of non-small cell lung cancer. Bioengineered. 2021;12(1):4643-4653.
40 M Ling, L Quan, X Lai, et al. VEGFB promotes myoblasts proliferation and differentiation through VEGFR1-PI3K/Akt signaling pathway. Int J Mol Sci. 2021;22(24):13352.
41 C Wang, Q He, Y Yin, Y Wu, X Li. Clonorchis sinensis granulin promotes malignant transformation of hepatocyte through EGFR-Mediated RAS/MAPK/ERK and PI3K/Akt signaling pathways. Front Cell Infect Microbiol. 2021;11:734750.
42 W Wang, A Fridman, W Blackledge, et al. The phosphatidylinositol 3-kinase/akt cassette regulates purine nucleotide synthesis. J Biol Chem. 2009;284(6):3521-3528.
43 FB Feng, HY Qiu. Effects of artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed Pharmacother. 2018;102:1209-1220.
44 A Saha, S Connelly, J Jiang, et al. Akt phosphorylation and regulation of transketolase is a nodal point for amino acid control of purine synthesis. Mol Cell. 2014;55(2):264-276.
45 I Ben-Sahra, G Hoxhaj, SJH Ricoult, JM Asara, BD Manning. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science. 2016;351(6274):728-733.
46 Y Sun, Y Liu, X Ma, H Hu. The influence of cell cycle regulation on chemotherapy. Int J Mol Sci. 2021;22(13):6923.
47 J Liu, Y Peng, W Wei. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol. 2022;32(1):30-44.
48 Y Chen, P Lan. Total syntheses and biological evaluation of the ganoderma lucidum alkaloids lucidimines B and C. ACS Omega. 2018;3(3):3471-3481.
49 P Icard, L Fournel, Z Wu, M Alifano, H Lincet. Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci. 2019;44(6):490-501.
50 S Carujo, JM Estanyol, A Ejarque, N Agell, O Bachs, MJ Pujol. Glyceraldehyde 3-phosphate dehydrogenase is a SET-binding protein and regulates cyclin B-cdk1 activity. Oncogene. 2006;25(29):4033-4042.
51 J Liang, R Cao, Y Zhang, et al. PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun. 2016;7:12431.
52 M Ruiz-Estevez, J Staats, E Paatela, et al. Promotion of myoblast differentiation by Fkbp5 via Cdk4 isomerization. Cell Rep. 2018;25(9):2537-2551. e8.
53 JM Suski, M Braun, V Strmiska, P Sicinski. Targeting cell-cycle machinery in cancer. Cancer Cell. 2021;39(6):759-778.
54 TN Moiseeva, CJ Bakkenist. Regulation of the initiation of DNA replication in human cells. DNA Repair (Amst). 2018;72:99-106.
55 P Wild, J Matos. Cell cycle control of DNA joint molecule resolution. Curr Opin Cell Biol. 2016;40:74-80.
56 JM Oh, K Myung. Crosstalk between different DNA repair pathways for DNA double strand break repairs. Mutat Res Genet Toxicol Environ Mutagen. 2022;873:503438.
57 S Paul, D Patra, R Kundu. Lignan enriched fraction (LRF) of Phyllanthus amarus promotes apoptotic cell death in human cervical cancer cells in vitro. Sci Rep. 2019;9(1):14950.
58 Q Wang, J Li, J Zhu, et al. Genome-wide CRISPR/Cas9 screening for therapeutic targets in NSCLC carrying wild-type TP53 and receptor tyrosine kinase genes. Clin Transl Med. 2022;12(6):e882.
59 O Shalem, NE Sanjana, F Zhang. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. 2015;16(5):299-311.
60 KJ Livak, TD Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402-408.
PDF

Accesses

Citations

Detail

Sections
Recommended

/