mRNA PROTACs: engineering PROTACs for high-efficiency targeted protein degradation

Xiaoqi Xue, Chen Zhang, Xiaolin Li, Junqiao Wang, Haowei Zhang, Ying Feng, Naihan Xu, Hongyan Li, Chunyan Tan, Yuyang Jiang, Ying Tan

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (2) : e478. DOI: 10.1002/mco2.478
ORIGINAL ARTICLE

mRNA PROTACs: engineering PROTACs for high-efficiency targeted protein degradation

Author information +
History +

Abstract

Proteolysis-targeting chimeras (PROTACs) are essential bifunctional molecules that target proteins of interest (POIs) for degradation by cellular ubiquitination machinery. Despite significant progress made in understanding PROTACs' functions, their therapeutic potential remains largely untapped. As a result of the success of highly flexible, scalable, and low-cost mRNA therapies, as well as the advantages of the first generation of peptide PROTACs (p-PROTACs), we present for the first time an engineering mRNA PROTACs (m-PROTACs) strategy. This design combines von Hippel–Lindau (VHL) recruiting peptide encoding mRNA and POI-binding peptide encoding mRNA to form m-PROTAC and promote cellular POI degradation. We then performed proof-of-concept experiments using two m-PROTACs targeting two cancer-related proteins, estrogen receptor alpha and B-cell lymphoma-extra large protein. Our results demonstrated that m-PROTACs could successfully degrade the POIs in different cell lines and more effectively inhibit cell proliferation than the traditional p-PROTACs. Moreover, the in vivo experiment demonstrated that m-PROTAC led to significant tumor regression in the 4T1 mouse xenograft model. This finding highlights the enormous potential of m-PROTAC as a promising approach for targeted protein degradation therapy.

Keywords

in vitro transcribed mRNA (IVT-mRNA) / mRNA / peptide proteolysis-argeting chimeras / proteolysis-argeting chimeras (PROTAC) / Targeted protein degradation (TPD)

Cite this article

Download citation ▾
Xiaoqi Xue, Chen Zhang, Xiaolin Li, Junqiao Wang, Haowei Zhang, Ying Feng, Naihan Xu, Hongyan Li, Chunyan Tan, Yuyang Jiang, Ying Tan. mRNA PROTACs: engineering PROTACs for high-efficiency targeted protein degradation. MedComm, 2024, 5(2): e478 https://doi.org/10.1002/mco2.478

References

[1]
Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21:181-200.
[2]
Fang Y, Wang J, Zhao M, et al. Progress and challenges in targeted protein degradation for neurodegenerative disease therapy. J Med Chem. 2022;65(17):11454-11477.
[3]
An S, Fu L. Small-molecule PROTACs: an emerging and promising approach for the development of targeted therapy drugs. eBioMedicine. 2018;36:553-562.
[4]
Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A. 2001;98(15):8554-8559.
[5]
Schneekloth JS, Fonseca FN, Koldobskiy M, et al. Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc. 2004;126(12):3748-3754.
[6]
He S, Gao F, Ma J, Ma H, Dong G, Sheng C. Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer. Angew Chem Int Ed. 2021;60(43):23299-23305.
[7]
Lim S, Khoo R, Peh KM, et al. bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA). Proc Natl Acad Sci U S A. 2020;117(11):5791-5800.
[8]
Liu J, Chen H, Kaniskan HÜ, et al. TF-PROTACs enable targeted degradation of transcription factors. J Am Chem Soc. 2021;143(23):8902-8910.
[9]
Shao J, Yan Y, Ding D, et al. Destruction of DNA-binding proteins by programmable oligonucleotide PROTAC (O'PROTAC): effective targeting of LEF1 and ERG. Adv Sci. 2021;8(20):e2102555.
[10]
Zhang X, Zhang Z, Xue X, et al. PROTAC degrader of estrogen receptor α targeting DNA-binding domain in breast cancer. ACS Pharmacol Transl Sci. 2022;5(11):1109-1118.
[11]
Zhang C, Zeng Z, Cui D, et al. Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nat Commun. 2021;12(1):2934.
[12]
Pillow TH, Adhikari P, Blake RA, et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem. 2020;15(1):17-25.
[13]
Yang N, Kong B, Zhu Z, et al. Recent advances in targeted protein degraders as potential therapeutic agents. Mol Divers. 2023.
CrossRef Google scholar
[14]
Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949):1465-1468.
[15]
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018;17:261-279.
[16]
FH A, Mirjani M, Montazer V, et al. Review on approved and in progress COVID-19 vaccines. Iran J Pharm Res. 2022;21(1):e124228.
[17]
Kimchi-Sarfaty C, Oh JM, Kim I-W, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315(5811):525-528.
[18]
Cannarozzi G, Schraudolph NN, Faty M, et al. A role for codon order in translation dynamics. Cell. 2010;141(2):355-367.
[19]
Li Y, Kiledjian M. Regulation of mRNA decapping. WIREs RNA. 2010;1(2):253-265.
[20]
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov. 2014;13:759-780.
[21]
Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics. 2020;12(2):102.
[22]
Munroe D, Jacobson A. mRNA poly(A) tail, a 3′ enhancer of translational initiation. Mol Cell Biol. 1990;10(7):3441-3455.
[23]
Mugridge JS, Coller J, Gross JD. Structural and molecular mechanisms for the control of eukaryotic 5′-3′ mRNA decay. Nat Struct Mol Biol. 2018;25(12):1077-1085.
[24]
Hogan MJ, Pardi N. mRNA vaccines in the COVID-19 pandemic and beyond. Annu Rev Med. 2022;73:17-39.
[25]
Jiang Y, Deng Q, Zhao H, et al. Development of stabilized peptide-based PROTACs against estrogen receptor α. ACS Chem Biol. 2018;13(3):628-635.
[26]
Kim JH, Lee S, Li L, et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One. 2011;6(4):e18556.
[27]
Osborn MJ, PM A, McElmurry RT, et al. A picornaviral 2A-like sequence-based tricistronic vector allowing for high-level therapeutic gene expression coupled to a dual-reporter system. Mol Ther. 2005;12(3):569-574.
[28]
Naganuma M, Ohoka N, Tsuji G, et al. Development of chimeric molecules that degrade the estrogen receptor using decoy oligonucleotide ligands. ACS Med Chem Lett. 2022;13(1):134-139.
[29]
Dai Y, Yue N, Gong J, et al. Development of cell-permeable peptide-based PROTACs targeting estrogen receptor α. Eur J Med Chem. 2020;187:111967.
[30]
Costales MG, Aikawa H, Li Y, et al. Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Proc Natl Acad Sci U S A. 2020;117(5):2406-2411.
[31]
Pal P, Thummuri D, Lv D, et al. Discovery of a novel BCL-XL PROTAC degrader with enhanced BCL-2 inhibition. J Med Chem. 2021;64(19):14230-14246.
[32]
Zhang X, He Y, Zhang P, et al. Discovery of IAP-recruiting BCL-X(L) PROTACs as potent degraders across multiple cancer cell lines. Eur J Med Chem. 2020;199:112397.
[33]
Zhang X, Thummuri D, Liu X, et al. Discovery of PROTAC BCL-XL degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem. 2020;192:112186.
[34]
Zheng J, Tan C, Xue P, et al. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation. Biochem Biophys Res Commun. 2016;470(4):936-940.
[35]
Khan S, Zhang X, Lv D, et al. A selective BCL-X(L) PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019;25(12):1938-1947.
[36]
Zhang Q, Khan S, Zhang X, et al. Targeting BCL-XL by Protac DT2216 effectively eliminates leukemia cells in T-ALL pre-clinical models. Blood. 2019;134:3870.

RIGHTS & PERMISSIONS

2024 2024 The Authors. MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/