AMPK-upregulated microRNA-708 plays as a suppressor of cellular senescence and aging via downregulating disabled-2 and mTORC1 activation

Jian Zhang1,2, Hui Gong1, Tingting Zhao1, Weitong Xu1, Honghan Chen1, Tiepeng Li1, Yu Yang1, Ming Yang1, Ning Huang1, Chuhui Gong1, Fangfang Wang1, Cuiying Zhang3, Jin Liu1, Hengyi Xiao1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (3) : e475. DOI: 10.1002/mco2.475
ORIGINAL ARTICLE

AMPK-upregulated microRNA-708 plays as a suppressor of cellular senescence and aging via downregulating disabled-2 and mTORC1 activation

  • Jian Zhang1,2, Hui Gong1, Tingting Zhao1, Weitong Xu1, Honghan Chen1, Tiepeng Li1, Yu Yang1, Ming Yang1, Ning Huang1, Chuhui Gong1, Fangfang Wang1, Cuiying Zhang3, Jin Liu1, Hengyi Xiao1()
Author information +
History +

Abstract

Senescence-associated microRNAs (SA-miRNAs) are important molecules for aging regulation. While many aging-promoting SA-miRNAs have been identified, confirmed aging-suppressive SA-miRNAs are rare, that impeded our full understanding on aging regulation. In this study, we verified that miR-708 expression is decreased in senescent cells and aged tissues and revealed that miR-708 overexpression can alleviate cellular senescence and aging performance. About the molecular cascade carrying the aging suppressive action of miR-708, we unraveled that miR-708 directly targets the 3′UTR of the disabled 2 (Dab2) gene and inhibits the expression of DAB2. Interestingly, miR-708-caused DAB2 downregulation blocks the aberrant mammalian target of rapamycin complex 1 (mTORC1) activation, a driving metabolic event for senescence progression, and restores the impaired autophagy, a downstream event of aberrant mTORC1 activation. We also found that AMP-activated protein kinase (AMPK) activation can upregulate miR-708 via the elevation of DICER expression, and miR-708 inhibitor is able to blunt the antiaging effect of AMPK. In summary, this study characterized miR-708 as an aging-suppressive SA-miRNA for the first time and uncovered a new signaling cascade, in which miR-708 links the DAB2/mTOR axis and AMPK/DICER axis together. These findings not only demonstrate the potential role of miR-708 in aging regulation, but also expand the signaling network connecting AMPK and mTORC1.

Keywords

aging / AMP-activated protein kinase (AMPK) / Disabled 2 (DAB2) / miR-708 / mammalian traget of rapamycin coplex 1 (mTORC1)

Cite this article

Download citation ▾
Jian Zhang, Hui Gong, Tingting Zhao, Weitong Xu, Honghan Chen, Tiepeng Li, Yu Yang, Ming Yang, Ning Huang, Chuhui Gong, Fangfang Wang, Cuiying Zhang, Jin Liu, Hengyi Xiao. AMPK-upregulated microRNA-708 plays as a suppressor of cellular senescence and aging via downregulating disabled-2 and mTORC1 activation. MedComm, 2024, 5(3): e475 https://doi.org/10.1002/mco2.475

References

1 J Campisi. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513-522.
2 V Gorgoulis, PD Adams, A Alimonti, et al. Cellular senescence: defining a path forward. Cell. 2019;179(4):813-827.
3 SS Khan, BD Singer, DE Vaughan. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell. 2017;16(4):624-633.
4 A Rufini, P Tucci, I Celardo, et al. Senescence and aging: the critical roles of p53. Oncogene. 2013;32(43):5129-5143.
5 H Rayess, MB Wang, ES Srivatsan. Cellular senescence and tumor suppressor gene p16. Int J Cancer. 2012;130(8):1715-1725.
6 CD Wiley, J Campisi. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab. 2021;3(10):1290-1301.
7 YC Kim, KL Guan. mTOR: a pharmacologic target for autophagy regulation[J]. J Clin Invest. 2015;125(1):25-32.
8 J Xu, J Ji, XH Yan. Cross-talk between AMPK and mTOR in regulating energy balance[J]. Crit Rev Food Sci Nutr. 2012;52(5):373-381.
9 SC Johnson, PS Rabinovitch, M Kaeberlein. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493(7432):338-345.
10 A Salminen, K Kaarniranta. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230-241.
11 R Munk, AC Panda, I Grammatikakis. Senescence-Associated MicroRNAs. Int Rev Cell Mol Biol. 2017;334:177-205.
12 X Ma, Q Zheng, G Zhao, et al. Regulation of cellular senescence by microRNAs. Mech Ageing Dev. 2020;189:111264.
13 T Ito, S Yagi, M Yamakuchi. MicroRNA-34a regulation of endothelial senescence[J]. Biochem Biophys Res Commun. 2010;398(4):735-740.
14 Y Zheng, Z Xu. MicroRNA-22 induces endothelial progenitor cell senescence by targeting AKT3. Cell Physiol Biochem. 2014;34(5):1547-1555.
15 S Zhu, S Deng, Q Ma, et al. MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res. 2013;112(1):152-164.
16 A Lang, S Grether-Beck, M Singh, et al. MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging (Albany NY). 2016;8(3):484-505.
17 V Borgdorff, ME Lleonart, CL Bishop, et al. Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene. 2010;29(15):2262-2271.
18 X Han, H Tan, X Wang, et al. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging Cell. 2016;15(3):416-427.
19 H Gong, HH Chen, P Xiao, et al. miR-146a impedes the anti-aging effect of AMPK via NAMPT suppression and NAD+/SIRT inactivation. Signal Transduct Target Ther. 2022;7(1):66-79.
20 EE Salmon, JJ Breithaupt, GA Truskey. Application of oxidative stress to a tissue-engineered vascular aging model induces endothelial cell senescence and activation. Cells. 2020;9(5):1292.
21 JJ Lee, SC Ng, JY Hsu, et al. Galangin reverses H2O2-induced dermal fibroblast senescence via SIRT1-PGC-1α/Nrf2 signaling. Int J Mol Sci. 2022;23(3):1387.
22 M Podhorecka, B Ibanez, A Dmoszyńska. Metformin—its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw. 2017;71(0):170-175.
23 HN Noren, K Abdelmohsen, M Gorospe, et al. microRNA expression patterns reveal differential expression of target genes with age. Plos One. 2010;5(5):e10724.
24 BP Lee, I Buric, A George-Pandeth, et al. MicroRNAs miR-203-3p, miR-664-3p and miR-708-5p are associated with median strain lifespan in mice. Sci Rep. 2017;7:44620.
25 KF Azman, R Rahimah Zakaria. D-Galactose-induced accelerated aging model: an overview. Biogerontology. 2019;20(6):763-782.
26 J Lu, YL Zheng, DM Wu, et al. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem Pharmacol. 2007;74(7):1078-1090.
27 K Sun, P Yang, R Zhao, et al. Matrine attenuates D-galactose-induced aging-related behavior in mice via inhibition of cellular senescence and oxidative stress. Oxid Med Cell Longev. 2018;2018:7108604.
28 IY Abdelgawad, KT Sadak, DW Lone. Molecular mechanisms and cardiovascular implications of cancer therapy-induced senescence. Pharmacol Ther. 2021;221:107751.
29 X Han, H Chen, H Gong, et al. Autolysosomal degradation of cytosolic chromatin fragments antagonizes oxidative stress-induced senescence. J Biol Chem. 2020;295(14):4451-4463.
30 Y Jiang, AN Woosley, N Sivalingam, et al. Cathepsin-B-mediated cleavage of Disabled-2 regulates TGF-beta-induced autophagy. Nat Cell Biol. 2016;18(8):851-863.
31 SC Ogbu, PR Musich, J Zhang, et al. The role of disabled-2 (Dab2) in diseases. Gene. 2021;769:145202.
32 NH Vuong, SO Salah, BC Vanderhyden. 17beta-Estradiol sensitizes ovarian surface epithelium to transformation by suppressing Disabled-2 expression. Sci Rep. 2017;7(1):16702.
33 D Goldbraikh, D Neufeld, Y Eid-Mutlak, et al. USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation. EMBO Rep. 2020;21(4):e48791.
34 HJ Tsai, CL Huang, YW Chang, et al. Disabled-2 is required for efficient hemostasis and platelet activation by thrombin in mice. Arterioscler Thromb Vasc Biol. 2014;34(11):2404-2412.
35 W Tan, H Tang, X Jiang, et al. Metformin mediates induction of miR-708 to inhibit self-renewal and chemoresistance of breast cancer stem cells through targeting CD47. J Cell Mol Med. 2019;23(9):5994-6004.
36 GV Ronnett, EK Kim, LE Landree, et al. Fatty acid metabolism as a target for obesity treatment. Physiol Behav. 2005;85(1):25-35.
37 R Di Micco, V Krizhanovsky, D Baker, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75-95.
38 JL Duan, B Ruan, P Song, et al. Shear stress-induced cellular senescence blunts liver regeneration through Notch-sirtuin 1-P21/P16 axis. Hepatology. 2022;75(3):584-599.
39 L Sun, Q Zhao, Y Xiao, et al. Trehalose targets Nrf2 signal to alleviate d-galactose induced aging and improve behavioral ability. Biochem Biophys Res Commun. 2020;521(1):113-119.
40 M Gerasymchuk, V Cherkasova, O Kovalchuk, et al. The role of microRNAs in organismal and skin aging. Int J Mol Sci. 2020;21(15):5281.
41 W Huang, WT Wang, K Fang, et al. MIR-708 promotes phagocytosis to eradicate T-ALL cells by targeting CD47. Mol Cancer. 2018;17(1):12.
42 SN Sun, S Hu, YP Shang, et al. Relevance function of microRNA-708 in the pathogenesis of cancer. Cell Signal. 2019;63:109390.
43 K Yang, YW Li, ZY Gao, et al. MiR-93 functions as a tumor promoter in prostate cancer by targeting disabled homolog 2 (DAB2) and an antitumor polysaccharide from green tea (Camellia sinensis) on their expression. Int J Biol Macromol. 2019;125:557-565.
44 X Tian, Z Zhang. miR-191/DAB2 axis regulates the tumorigenicity of estrogen receptor-positive breast cancer. IUBMB Life. 2018;70(1):71-80.
45 A Cayo, R Segovia, W Venturini, et al. mTOR activity and autophagy in senescent cells, a complex partnership. Int J Mol Sci. 2021;22(15):8149.
46 SM Cadena, AM Heberle, U Rehbein, et al. mTORC1 crosstalk with stress granules in aging and age-related diseases. Front Aging. 2021;2:761333.
47 ZX Yan, LL Wu, K Xue, et al. MicroRNA187 overexpression is related to tumor progression and determines sensitivity to bortezomib in peripheral T-cell lymphoma. Leukemia. 2014;28(4):880-887.
48 J Ballesteros-Alvarez, JK Andersen. mTORC2: the other mTOR in autophagy regulation. Aging Cell. 2021;20(8):e13431.
49 H Matsuyama, HI Suzuki. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. Int J Mol Sci. 2019;21(1):132.
50 J Liu, W Liu, H Ying, et al. Analysis of microRNA expression profile induced by AICAR in mouse hepatocytes. Gene. 2013;512(2):364-372.
51 HN Noren, A Martin-Montalvo, DF Dluzen, et al. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell. 2016;15(3):572-581.
52 R Ricciarelli, A Azzi, JM Zingg. Reduction of senescence-associated beta-galactosidase activity by vitamin E in human fibroblasts depends on subjects' age and cell passage number. Biofactors. 2020;46(4):665-674.
PDF

Accesses

Citations

Detail

Sections
Recommended

/