Heat shock protein 90: biological functions, diseases, and therapeutic targets

Huiyun Wei, Yingying Zhang, Yilin Jia, Xunan Chen, Tengda Niu, Aniruddha Chatterjee, Pengxing He, Guiqin Hou

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (2) : e470. DOI: 10.1002/mco2.470
REVIEW

Heat shock protein 90: biological functions, diseases, and therapeutic targets

Author information +
History +

Abstract

Heat shock protein 90 (Hsp90) is a predominant member among Heat shock proteins (HSPs), playing a central role in cellular protection and maintenance by aiding in the folding, stabilization, and modification of diverse protein substrates. It collaborates with various co-chaperones to manage ATPase-driven conformational changes in its dimer during client protein processing. Hsp90 is critical in cellular function, supporting the proper operation of numerous proteins, many of which are linked to diseases such as cancer, Alzheimer's, neurodegenerative conditions, and infectious diseases. Recognizing the significance of these client proteins across diverse diseases, there is a growing interest in targeting Hsp90 and its co-chaperones for potential therapeutic strategies. This review described biological background of HSPs and the structural characteristics of HSP90. Additionally, it discusses the regulatory role of heat shock factor-1 (HSF-1) in modulating HSP90 and sheds light on the dynamic chaperone cycle of HSP90. Furthermore, the review discusses the specific contributions of HSP90 in various disease contexts, especially in cancer. It also summarizes HSP90 inhibitors for cancer treatment, offering a thoughtful analysis of their strengths and limitations. These advancements in research expand our understanding of HSP90 and open up new avenues for considering HSP90 as a promising target for therapeutic intervention in a range of diseases.

Keywords

client protein / co-chaperone / disease / HSP90 / inhibitor

Cite this article

Download citation ▾
Huiyun Wei, Yingying Zhang, Yilin Jia, Xunan Chen, Tengda Niu, Aniruddha Chatterjee, Pengxing He, Guiqin Hou. Heat shock protein 90: biological functions, diseases, and therapeutic targets. MedComm, 2024, 5(2): e470 https://doi.org/10.1002/mco2.470

References

[1]
Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat shock proteins and cancer. Trends Pharmacol Sci. 2017;38(3):226-256.
[2]
Lubkowska A, Pluta W, Strońska A, Lalko A. Role of heat shock proteins (HSP70 and HSP90) in viral infection. Int J Mol Sci. 2021;22(17):9366
[3]
Gorska M, Popowska U, Sielicka-Dudzin A, et al. Geldanamycin and its derivatives as hsp90 inhibitors. Front Biosci (Landmark Ed). 2012;17(6):2269-2277.
[4]
Mori M, Hitora T, Nakamura O, et al. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int J Oncol. 2015;46(1):47-54.
[5]
Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Taranejoo S, Zali H. HSP90 and co-chaperones: impact on tumor progression and prospects for molecular-targeted cancer therapy. Cancer Invest. 2020;38(5):310-328.
[6]
Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ. Targeting HSP90 for cancer therapy. Br J Cancer. 2009;100(10):1523-1529.
[7]
Garnier C, Lafitte D, Tsvetkov PO, et al. Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the c-terminal domain. J Biol Chem. 2002;277(14):12208-12214.
[8]
Seclì L, Avalle L, Poggio P, et al. Targeting the extracellular HSP90 co-chaperone morgana inhibits cancer cell migration and promotes anticancer immunity. Cancer Res. 2021;81(18):4794-4807.
[9]
Hoter A, El-Sabban ME, Naim HY. The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560
[10]
Zabinsky RA, Mason GA, Queitsch C, Jarosz DF. It's not magic—hsp90 and its effects on genetic and epigenetic variation. Semin Cell Dev Biol. 2019;88:21-35.
[11]
Bohush A, Bieganowski P, Filipek A. Hsp90 and its co-chaperones in neurodegenerative diseases. Int J Mol Sci. 2019;20(20):4976
[12]
Kryeziu K, Bruun J, Guren TK, Sveen A, Lothe RA. Combination therapies with HSP90 inhibitors against colorectal cancer. Biochim Biophys Acta Rev Cancer. 2019;1871(2):240-247.
[13]
Saini J, Sharma PK. Clinical, prognostic and therapeutic significance of heat shock proteins in cancer. Curr Drug Targets. 2018;19(13):1478-1490.
[14]
Blagg BS, Kerr TD. Hsp90 inhibitors: small molecules that transform the hsp90 protein folding machinery into a catalyst for protein degradation. Med Res Rev. 2006;26(3):310-338.
[15]
Jee B, Dhar R, Singh S, Karmakar S. Heat shock proteins and their role in pregnancy: redefining the function of ‘‘old rum in a new bottle. Front Cell Dev Biol. 2021;9:648463.
[16]
De Maio A. Extracellular heat shock proteins, cellular export vesicles, and the stress observation system: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones. 2011;16(3):235-249.
[17]
Jego G, Hazoumé A, Seigneuric R, Garrido C. Targeting heat shock proteins in cancer. Cancer Lett. 2013;332(2):275-285.
[18]
Aswad A, Liu T. Targeting heat shock protein 90 for anti-cancer drug development. Adv Cancer Res. 2021;152:179-204.
[19]
Yun CW, Kim HJ, Lim JH, Lee SH. Heat shock proteins: agents of cancer development and therapeutic targets in anti-cancer therapy. Cells. 2019;9(1):60.
[20]
Shan Q, Ma F, Wei J, Li H, Ma H, Sun P. Physiological functions of heat shock proteins. Curr Protein Pept Sci. 2020;21(8):751-760.
[21]
van Noort JM, Bsibsi M, Nacken P, Gerritsen WH, Amor S. The link between small heat shock proteins and the immune system. Int J Biochem Cell Biol. 2012;44(10):1670-1679.
[22]
Nakamura H, Minegishi H. Hsp60 as a drug target. Curr Pharm Des. 2013;19(3):441-451.
[23]
Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer. 2010;10(8):537-549.
[24]
Kumar S, Stokes J, Singh UP, et al. Targeting hsp70: a possible therapy for cancer. Cancer Lett. 2016;374(1):156-166.
[25]
Moseley P. Stress proteins and the immune response. Immunopharmacology. 2000;48(3):299-302.
[26]
Li L, Chen NN, You QD, Xu XL. An updated patent review of anticancer hsp90 inhibitors (2013-present). Expert Opin Ther Pat. 2021;31(1):67-80.
[27]
Birbo B, Madu EE, Madu CO, Jain A, Lu Y. Role of HSP90 in cancer. Int J Mol Sci. 2021;22(19):10317.
[28]
Zuehlke AD, Beebe K, Neckers L, Prince T. Regulation and function of the human hsp90aa1 gene. Gene. 2015;570(1):8-16.
[29]
Seo YH. Organelle-specific hsp90 inhibitors. Arch Pharm Res. 2015;38(9):1582-1590.
[30]
Zheng ZG, Zhang X, Liu XX, et al. Inhibition of hsp90β improves lipid disorders by promoting mature srebps degradation via the ubiquitin-proteasome system. Theranostics. 2019;9(20):5769-5783.
[31]
Jing R, Duncan CB, Duncan SA. A small-molecule screen reveals that hsp90β promotes the conversion of induced pluripotent stem cell-derived endoderm to a hepatic fate and regulates HNF4A turnover. Development. 2017;144(10):1764-1774.
[32]
Meng J, Chen S, Lei YY, et al. Hsp90β promotes aggressive vasculogenic mimicry via epithelial-mesenchymal transition in hepatocellular carcinoma. Oncogene. 2019;38(2):228-243.
[33]
Kim JW, Cho YB, Lee S. Cell surface GRP94 as a novel emerging therapeutic target for monoclonal antibody cancer therapy. Cells. 2021;10(3):670
[34]
Masgras I, Laquatra C, Cannino G, Serapian SA, Colombo G, Rasola A. The molecular chaperone trap1 in cancer: from the basics of biology to pharmacological targeting. Semin Cancer Biol. 2021;76:45-53.
[35]
Li J, Buchner J. Structure, function and regulation of the hsp90 machinery. Biomed J. 2013;36(3):106-117.
[36]
Mayer MP, Le Breton L. Hsp90: breaking the symmetry. Mol Cell. 2015;58(1):8-20.
[37]
Girstmair H, Tippel F, Lopez A, et al. The hsp90 isoforms from s. Cerevisiae differ in structure, function and client range. Nat Commun. 2019;10(1):3626.
[38]
Biebl MM, Buchner J. Structure, function, and regulation of the hsp90 machinery. Cold Spring Harb Perspect Biol. 2019;11(9):a034017
[39]
Jahn M, Rehn A, Pelz B, et al. The charged linker of the molecular chaperone hsp90 modulates domain contacts and biological function. Proc Natl Acad Sci USA. 2014;111(50):17881-17886.
[40]
Shiau AK, Harris SF, Southworth DR, Agard DA. Structural analysis of e. Coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell. 2006;127(2):329-340.
[41]
Blundell KL, Pal M, Roe SM, Pearl LH, Prodromou C. The structure of FKBP38 in complex with the meevd tetratricopeptide binding-motif of hsp90. PLoS One. 2017;12(3):e0173543.
[42]
Soti C, Vermes A, Haystead TA, Csermely P. Comparative analysis of the ATP-binding sites of hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the c-terminal ATP-binding site. Eur J Biochem. 2003;270(11):2421-2428.
[43]
Koch G, Smith M, Macer D, Webster P, Mortara R. Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin. J Cell Sci. 1986;86:217-232.
[44]
Gupta RS. Phylogenetic analysis of the 90 kd heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol. 1995;12(6):1063-1073.
[45]
Dollins DE, Immormino RM, Gewirth DT. Structure of unliganded GRP94, the endoplasmic reticulum hsp90. Basis for nucleotide-induced conformational change. J Biol Chem. 2005;280(34):30438-30447.
[46]
Garg G, Khandelwal A, Blagg BS. Anticancer inhibitors of hsp90 function: beyond the usual suspects. Adv Cancer Res. 2016;129:51-88.
[47]
Biswas C, Ostrovsky O, Makarewich CA, Wanderling S, Gidalevitz T, Argon Y. The peptide-binding activity of GRP94 is regulated by calcium. Biochem J. 2007;405(2):233-241.
[48]
Scheibel T, Siegmund HI, Jaenicke R, Ganz P, Lilie H, Buchner J. The charged region of hsp90 modulates the function of the n-terminal domain. Proc Natl Acad Sci USA. 1999;96(4):1297-1302.
[49]
Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO. The hsp90-related protein trap1 is a mitochondrial protein with distinct functional properties. J Biol Chem. 2000;275(5):3305-3312.
[50]
Song HY, Dunbar JD, Zhang YX, Guo D, Donner DB. Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem. 1995;270(8):3574-3581.
[51]
Leskovar A, Wegele H, Werbeck ND, Buchner J, Reinstein J. The atpase cycle of the mitochondrial hsp90 analog trap1. J Biol Chem. 2008;283(17):11677-11688.
[52]
Chen B, Piel WH, Gui L, Bruford E, Monteiro A. The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics. 2005;86(6):627-637.
[53]
Altieri DC, Stein GS, Lian JB, Languino LR. TRAP-1, the mitochondrial hsp90. Biochim Biophys Acta. 2012;1823(3):767-773.
[54]
Somogyvári M, Khatatneh S, Sőti C. Hsp90: from cellular to organismal proteostasis. Cells. 2022;11(16):2479
[55]
Sural S, Liang CY, Wang FY, Ching TT, Hsu AL. HSB-1/HSF-1 pathway modulates histone H4 in mitochondria to control mtdna transcription and longevity. Sci Adv. 2020;6(43).
[56]
Criado-Marrero M, Rein T, Binder EB, Porter JT, Koren J, Blair LJ. Hsp90 and FKBP51: complex regulators of psychiatric diseases. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):20160532
[57]
Mazaira GI, Daneri-Becerra C, Zgajnar NR, Lotufo CM, Galigniana MD. Gene expression regulation by heat-shock proteins: the cardinal roles of hsf1 and hsp90. Biochem Soc Trans. 2018;46(1):51-65.
[58]
Storer CL, Dickey CA, Galigniana MD, Rein T, Cox MB. FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab. 2011;22(12):481-490.
[59]
Kurop MK, Huyen CM, Kelly JH, Blagg BSJ. The heat shock response and small molecule regulators. Eur J Med Chem. 2021;226:113846.
[60]
Puustinen MC, Sistonen L. Molecular mechanisms of heat shock factors in cancer. Cells. 2020;9(5):1202
[61]
Kühnel A, Schilling D, Combs SE, Haller B, Schwab M, Multhoff G. Radiosensitization of HSF-1 knockdown lung cancer cells by low concentrations of hsp90 inhibitor NVP-AUY922. Cells. 2019;8(10):1166
[62]
Prodromou C. Mechanisms of hsp90 regulation. Biochem J. 2016;473(16):2439-2452.
[63]
Calderwood SK. Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands? Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):20160524
[64]
Chatterjee S, Burns TF. Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci. 2017;18(9):1978
[65]
Wang G, Cao P, Fan Y, Tan K. Emerging roles of hsf1 in cancer: cellular and molecular episodes. Biochim Biophys Acta Rev Cancer. 2020;1874(1):188390.
[66]
Carpenter RL, Gökmen-Polar Y. Hsf1 as a cancer biomarker and therapeutic target. Curr Cancer Drug Targets. 2019;19(7):515-524.
[67]
Kumar S, Tomar MS, Acharya A. Hsf1-mediated regulation of tumor cell apoptosis: a novel target for cancer therapeutics. Future Oncol. 2013;9(10):1573-1586.
[68]
Cyran AM, Zhitkovich A. Heat shock proteins and hsf1 in cancer. Front Oncol. 2022;12:860320.
[69]
Chin Y, Gumilar KE, Li XG, et al. Targeting hsf1 for cancer treatment: mechanisms and inhibitor development. Theranostics. 2023;13(7):2281-2300.
[70]
Alasady MJ, Mendillo ML. The multifaceted role of hsf1 in tumorigenesis. Adv Exp Med Biol. 2020;1243:69-85.
[71]
Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18(6):345-360.
[72]
Oroz J, Blair LJ, Zweckstetter M. Dynamic aha1 co-chaperone binding to human hsp90. Protein Sci. 2019;28(9):1545-1551.
[73]
Li T, Jiang HL, Tong YG, Lu JJ. Targeting the hsp90-Cdc37-client protein interaction to disrupt hsp90 chaperone machinery. J Hematol Oncol. 2018;11(1):59.
[74]
Bhattacharya K, Picard D. The hsp70-hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Cell Mol Life Sci. 2021;78(23):7257-7273.
[75]
Zhu S, Tytgat J. Evolutionary epitopes of hsp90 and p23: implications for their interaction. Faseb j. 2004;18(9):940-947.
[76]
Lopez A, Dahiya V, Delhommel F, et al. Client binding shifts the populations of dynamic hsp90 conformations through an allosteric network. Sci Adv. 2021;7(51):eabl7295.
[77]
Baker JD, Ozsan I, Rodriguez Ospina S, Gulick D, Blair LJ. Hsp90 heterocomplexes regulate steroid hormone receptors: from stress response to psychiatric disease. Int J Mol Sci. 2018;20(1):79.
[78]
Stetz G, Verkhivker GM. Functional role and hierarchy of the intermolecular interactions in binding of protein kinase clients to the hsp90-Cdc37 chaperone: structure-based network modeling of allosteric regulation. J Chem Inf Model. 2018;58(2):405-421.
[79]
Walter S, Buchner J. Molecular chaperones–cellular machines for protein folding. Angew Chem Int Ed Engl. 2002;41(7):1098-1113.
[80]
Murphy PJ, Kanelakis KC, Galigniana MD, Morishima Y, Pratt WB. Stoichiometry, abundance, and functional significance of the hsp90/hsp70-based multiprotein chaperone machinery in reticulocyte lysate. J Biol Chem. 2001;276(32):30092-30098.
[81]
Caplan AJ, Mandal AK, Theodoraki MA. Molecular chaperones and protein kinase quality control. Trends Cell Biol. 2007;17(2):87-92.
[82]
Solárová Z, Mojžiš J, Solár P. Hsp90 inhibitor as a sensitizer of cancer cells to different therapies (review). Int J Oncol. 2015;46(3):907-926.
[83]
Meyer P, Prodromou C, Liao C, et al. Structural basis for recruitment of the atpase activator aha1 to the hsp90 chaperone machinery. Embo J. 2004;23(6):1402-1410.
[84]
Harst A, Lin H, Obermann WM. Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone hsp90 and contributes to kinase and hormone receptor activation. Biochem J. 2005;387:789-796.
[85]
Li J, Richter K, Buchner J. Mixed hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nat Struct Mol Biol. 2011;18(1):61-66.
[86]
Dutysheva EA, Utepova IA, Trestsova MA, et al. Synthesis and approbation of new neuroprotective chemicals of pyrrolyl- and indolylazine classes in a cell model of Alzheimer's disease. Eur J Med Chem. 2021;222:113577.
[87]
Pace MC, Xu G, Fromholt S, et al. Changes in proteome solubility indicate widespread proteostatic disruption in mouse models of neurodegenerative disease. Acta Neuropathol. 2018;136(6):919-938.
[88]
Shelton LB, Koren J, Blair LJ. Imbalances in the hsp90 chaperone machinery: implications for tauopathies. Front Neurosci. 2017;11:724.
[89]
Chen Y, Wang B, Liu D, et al. Hsp90 chaperone inhibitor 17-AAG attenuates Aβ-induced synaptic toxicity and memory impairment. J Neurosci. 2014;34(7):2464-2470.
[90]
Jinwal UK, Koren J, Borysov SI, et al. The hsp90 cochaperone, FKBP51, increases tau stability and polymerizes microtubules. J Neurosci. 2010;30(2):591-599.
[91]
Gracia L, Lora G, Blair LJ, Jinwal UK. Therapeutic potential of the hsp90/Cdc37 interaction in neurodegenerative diseases. Front Neurosci. 2019;13:1263.
[92]
Ghosh A, Chawla-Sarkar M, Stuehr DJ. Hsp90 interacts with inducible NO synthase client protein in its heme-free state and then drives heme insertion by an ATP-dependent process. Faseb j. 2011;25(6):2049-2060.
[93]
Aceros H, Der Sarkissian S, Borie M, Stevens LM, Mansour S, Noiseux N. Celastrol-type HSP90 modulators allow for potent cardioprotective effects. Life Sci. 2019;227:8-19.
[94]
Zhang X, Zhang Y, Miao Q, et al. Inhibition of HSP90 s-nitrosylation alleviates cardiac fibrosis via tgfβ/smad3 signalling pathway. Br J Pharmacol. 2021;178(23):4608-4625.
[95]
Lu A, Ran R, Parmentier-Batteur S, Nee A, Sharp FR. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J Neurochem. 2002;81(2):355-364.
[96]
Qi J, Liu Y, Yang P, et al. Heat shock protein 90 inhibition by 17-dimethylaminoethylamino-17-demethoxygeldanamycin protects blood-brain barrier integrity in cerebral ischemic stroke. Am J Transl Res. 2015;7(10):1826-1837.
[97]
Hu D, Mo X, Luo J, et al. 17-dmag ameliorates neuroinflammation and BBB disruption via SOX5 mediated PI3K/Akt pathway after intracerebral hemorrhage in rats. Int Immunopharmacol. 2023;123:110698.
[98]
Uddin MA, Akhter MS, Kubra KT, Barabutis N. Hsp90 inhibition protects brain endothelial cells against lps-induced injury. Biofactors. 2022;48(4):926-933.
[99]
Dutta T, Singh H, Edkins AL, Blatch GL. Hsp90 and associated co-chaperones of the malaria parasite. Biomolecules. 2022;12(8):1018.
[100]
Roy N, Nageshan RK, Ranade S, Tatu U. Heat shock protein 90 from neglected protozoan parasites. Biochim Biophys Acta. 2012;1823(3):707-711.
[101]
Hombach A, Ommen G, Sattler V, Clos J. Leishmania donovani P23 protects parasites against HSP90 inhibitor-mediated growth arrest. Cell Stress Chaperones. 2015;20(4):673-685.
[102]
Geller R, Taguwa S, Frydman J. Broad action of hsp90 as a host chaperone required for viral replication. Biochim Biophys Acta. 2012;1823(3):698-706.
[103]
Mohl BP, Roy P. Hsp90 chaperones bluetongue virus proteins and prevents proteasomal degradation. J Virol. 2019;93(20):.
[104]
Hu J, Anselmo D. In vitro reconstitution of a functional duck hepatitis B virus reverse transcriptase: posttranslational activation by hsp90. J Virol. 2000;74(24):11447-11455.
[105]
Hu J, Toft D, Anselmo D, Wang X. In vitro reconstitution of functional hepadnavirus reverse transcriptase with cellular chaperone proteins. J Virol. 2002;76(1):269-279.
[106]
Hu J, Toft DO, Seeger C. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. Embo J. 1997;16(1):59-68.
[107]
Fuhrmann-Stroissnigg H, Ling YY, Zhao J, et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun. 2017;8(1):422.
[108]
Kim G, Meriin AB, Gabai VL, et al. The heat shock transcription factor hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell. 2012;11(4):617-627.
[109]
Dutta Gupta S, Pan CH. Recent update on discovery and development of hsp90 inhibitors as senolytic agents. Int J Biol Macromol. 2020;161:1086-1098.
[110]
Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD. Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle. 2018;17(9):1048-1055.
[111]
Pahwa R, Dubhashi J, Singh A, et al. Inhibition of hsp 90 is associated with potent anti-tumor activity in papillary renal cell carcinoma. J Exp Clin Cancer Res. 2022;41(1):208.
[112]
Saber S, El-Fattah EEA, Abdelhamid AM, et al. Innovative challenge for the inhibition of hepatocellular carcinoma progression by combined targeting of HSP90 and STAT3/HIF-1α signaling. Biomed Pharmacother. 2023;158:114196.
[113]
Lagadari M, Zgajnar NR, Gallo LI, Galigniana MD. Hsp90-binding immunophilin FKBP51 forms complexes with htert enhancing telomerase activity. Mol Oncol. 2016;10(7):1086-1098.
[114]
Pick E, Kluger Y, Giltnane JM, et al. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 2007;67(7):2932-2937.
[115]
Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5(10):761-772.
[116]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.
[117]
Hassannia B, Vandenabeele P. Vanden Berghe T. Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35(6):830-849.
[118]
Zhao R, Houry WA. Hsp90: a chaperone for protein folding and gene regulation. Biochem Cell Biol. 2005;83(6):703-710.
[119]
Xu Q, Tu J, Dou C, et al. HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Mol Cancer. 2017;16(1):178.
[120]
Liu F, Wang L, Yi S, Liu Q, Xu X, Su M. Clinical and biological significances of heat shock protein 90 (hsp90) in human nasopharyngeal carcinoma cells and anti-cancer effects of hsp90 inhibitor. Biomed Pharmacother. 2019;120:109533.
[121]
Scheibel T, Buchner J. The hsp90 complex–a super-chaperone machine as a novel drug target. Biochem Pharmacol. 1998;56(6):675-682.
[122]
Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP. Targeting hsp90/hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2015;55:353-371.
[123]
Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 2013;14(10):630-642.
[124]
Zuehlke A, Johnson JL. Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers. 2010;93(3):211-217.
[125]
Chaudhury S, Narasimharao Meka P, Banerjee M, Kent CN, Blagg BSJ. Structure-based design, synthesis, and biological evaluation of hsp90β-selective inhibitors. Chemistry. 2021;27(59):14747-14764.
[126]
Shang Y, Xu X, Duan X, et al. Hsp70 and hsp90 oppositely regulate tgf-β signaling through chip/stub1. Biochem Biophys Res Commun. 2014;446(1):387-392.
[127]
Pasquini G, Giaccone G. C-MET inhibitors for advanced non-small cell lung cancer. Expert Opin Investig Drugs. 2018;27(4):363-375.
[128]
Kawakami H, Okamoto I. MET-targeted therapy for gastric cancer: the importance of a biomarker-based strategy. Gastric Cancer. 2016;19(3):687-695.
[129]
Changchien CY, Chang HH, Dai MS, et al. Distinct JNK/VEGFR signaling on angiogenesis of breast cancer-associated pleural fluid based on hormone receptor status. Cancer Sci. 2021;112(2):781-791.
[130]
Fan CS, Chen CC, Chen LL, et al. Extracellular hsp90α induces myd88-IRAK complex-associated ikkα/β-NF-κB/IRF3 and JAK2/TYK2-STAT-3 signaling in macrophages for tumor-promoting m2-polarization. Cells. 2022;11(2).
[131]
Akahane K, Sanda T, Mansour MR, et al. HSP90 inhibition leads to degradation of the tyk2 kinase and apoptotic cell death in t-cell acute lymphoblastic leukemia. Leukemia. 2016;30(1):219-228.
[132]
Baker-Williams AJ, Hashmi F, Budzyński MA, et al. Co-chaperones timp2 and AHA1 competitively regulate extracellular HSP90:client MMP2 activity and matrix proteolysis. Cell Rep. 2019;28(7):1894-1906. e1896.
[133]
Ou Y, Liu L, Xue L, et al. Trap1 shows clinical significance and promotes cellular migration and invasion through STAT3/MMP2 pathway in human esophageal squamous cell cancer. J Genet Genomics. 2014;41(10):529-537.
[134]
Janiszewska M, Primi MC, Izard T. Cell adhesion in cancer: beyond the migration of single cells. J Biol Chem. 2020;295(8):2495-2505.
[135]
Broemer M, Krappmann D, Scheidereit C. Requirement of hsp90 activity for ikappab kinase (IKK) biosynthesis and for constitutive and inducible IKK and nf-kappab activation. Oncogene. 2004;23(31):5378-5386.
[136]
Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985-999.
[137]
Redlak MJ, Miller TA. Targeting PI3K/Akt/HSP90 signaling sensitizes gastric cancer cells to deoxycholate-induced apoptosis. Dig Dis Sci. 2011;56(2):323-329.
[138]
Wayne N, Mishra P, Bolon DN. Hsp90 and client protein maturation. Methods Mol Biol. 2011;787:33-44.
[139]
Lachowiec J, Lemus T, Borenstein E, Queitsch C. Hsp90 promotes kinase evolution. Mol Biol Evol. 2015;32(1):91-99.
[140]
Wu H, Dyson HJ. Aggregation of zinc-free p53 is inhibited by hsp90 but not other chaperones. Protein Sci. 2019;28(11):2020-2023.
[141]
Hallett ST, Pastok MW, Morgan RML, et al. Differential regulation of g1 CDK complexes by the hsp90-Cdc37 chaperone system. Cell Rep. 2017;21(5):1386-1398.
[142]
Zhang PC, Liu X, Li MM, et al. At-533, a novel hsp90 inhibitor, inhibits breast cancer growth and HIF-1α/VEGF/VEGFR-2-mediated angiogenesis in vitro and in vivo. Biochem Pharmacol. 2020;172:113771.
[143]
Hasan A, Haque E, Hameed R, et al. Hsp90 inhibitor gedunin causes apoptosis in a549 lung cancer cells by disrupting hsp90:beclin-1:bcl-2 interaction and downregulating autophagy. Life Sci. 2020;256:118000.
[144]
Wu Y, Ding Y, Zheng X, Liao K. The molecular chaperone hsp90 maintains golgi organization and vesicular trafficking by regulating microtubule stability. J Mol Cell Biol. 2020;12(6):448-461.
[145]
Sawai A, Chandarlapaty S, Greulich H, et al. Inhibition of hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel. Cancer Res. 2008;68(2):589-596.
[146]
Wang B, Chen Z, Yu F, et al. Hsp90 regulates autophagy and plays a role in cancer therapy. Tumour Biol. 2016;37(1):1-6.
[147]
Sakellari M, Chondrogianni N, Gonos ES. Protein synthesis inhibition induces proteasome assembly and function. Biochem Biophys Res Commun. 2019;514(1):224-230.
[148]
Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17(12):887-904.
[149]
Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020;21(9).
[150]
Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497-1500.
[151]
Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating erbb3 signaling. Science. 2007;316(5827):1039-1043.
[152]
Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017;9(5).
[153]
Wang M, Yuang-Chi Chang A. Molecular mechanism of action and potential biomarkers of growth inhibition of synergistic combination of afatinib and dasatinib against gefitinib-resistant non-small cell lung cancer cells. Oncotarget. 2018;9(23):16533-16546.
[154]
Smith DL, Acquaviva J, Sequeira M, et al. The HSP90 inhibitor ganetespib potentiates the antitumor activity of EGFR tyrosine kinase inhibition in mutant and wild-type non-small cell lung cancer. Target Oncol. 2015;10(2):235-245.
[155]
Debruyne DN, Bhatnagar N, Sharma B, et al. ALK inhibitor resistance in ALK(f1174l)-driven neuroblastoma is associated with axl activation and induction of EMT. Oncogene. 2016;35(28):3681-3691.
[156]
Heuckmann JM, Hölzel M, Sos ML, et al. ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin Cancer Res. 2011;17(23):7394-7401.
[157]
Heukamp LC, Thor T, Schramm A, et al. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Sci Transl Med. 2012;4(141):141ra191.
[158]
Huang G, Cong Z, Wang X, et al. Targeting HSP90 attenuates angiotensin ii-induced adventitial remodelling via suppression of mitochondrial fission. Cardiovasc Res. 2020;116(5):1071-1084.
[159]
Wang L, Zhang L, Li L, et al. Small-molecule inhibitor targeting the hsp90-Cdc37 protein-protein interaction in colorectal cancer. Sci Adv. 2019;5(9):eaax2277.
[160]
Dutta Gupta S, Bommaka MK, Banerjee A. Inhibiting protein-protein interactions of hsp90 as a novel approach for targeting cancer. Eur J Med Chem. 2019;178:48-63.
[161]
Pillai RN, Ramalingam SS. Hsp90 inhibitors. J Thorac Oncol. 2012;7(16):S407-408. Suppl 5.
[162]
Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res. 2012;18(1):64-76.
[163]
Kurokawa Y, Honma Y, Sawaki A, et al. Pimitespib in patients with advanced gastrointestinal stromal tumor (chapter-gist-301): a randomized, double-blind, placebo-controlled phase iii trial. Ann Oncol. 2022;33(9):959-967.
[164]
Konstantinopoulos PA, Cheng SC, Supko JG, et al. Combined parp and HSP90 inhibition: preclinical and phase 1 evaluation in patients with advanced solid tumours. Br J Cancer. 2022;126(7):1027-1036.
[165]
Hoy SM. Pimitespib: first approval. Drugs. 2022;82(13):1413-1418.
[166]
Wang R, Han Z, Liu B, et al. Identification of natural compound radicicol as a potent fto inhibitor. Mol Pharm. 2018;15(9):4092-4098.
[167]
Schulte TW, Akinaga S, Soga S, et al. Antibiotic radicicol binds to the n-terminal domain of hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones. 1998;3(2):100-108.
[168]
Soga S, Neckers LM, Schulte TW, et al. KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of hsp90 binding signaling molecules. Cancer Res. 1999;59(12):2931-2938.
[169]
Shiotsu Y, Neckers LM, Wortman I, et al. Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential g(1) phase accumulation against chronic myelogenous leukemia cells through destabilization of bcr-abl with hsp90 complex. Blood. 2000;96(6):2284-2291.
[170]
Turbyville TJ, Wijeratne EM, Liu MX, et al. Search for hsp90 inhibitors with potential anticancer activity: isolation and sar studies of radicicol and monocillin i from two plant-associated fungi of the sonoran desert. J Nat Prod. 2006;69(2):178-184.
[171]
Mohammadian M, Feizollahzadeh S, Mahmoudi R, Toofani Milani A, Rezapour-Firouzi S, Karimi Douna B. Hsp90 inhibitor; NVP-AUY922 in combination with doxorubicin induces apoptosis and downregulates VEGF in MCF-7 breast cancer cell line. Asian Pac J Cancer Prev. 2020;21(6):1773-1778.
[172]
K Rochani A, Balasubramanian S, Ravindran Girija A, Maekawa T, Kaushal G, Kumar DS. Heat shock protein 90 (hsp90)-inhibitor-luminespib-loaded-protein-based nanoformulation for cancer therapy. Polymers (Basel). 2020;12(8).
[173]
Piotrowska Z, Costa DB, Oxnard GR, et al. Activity of the hsp90 inhibitor luminespib among non-small-cell lung cancers harboring EGFR exon 20 insertions. Ann Oncol. 2018;29(10):2092-2097.
[174]
Chan KC, Ting CM, Chan PS, et al. A novel hsp90 inhibitor at13387 induces senescence in ebv-positive nasopharyngeal carcinoma cells and suppresses tumor formation. Mol Cancer. 2013;12(1):128.
[175]
Canella A, Welker AM, Yoo JY, et al. Efficacy of onalespib, a long-acting second-generation HSP90 inhibitor, as a single agent and in combination with temozolomide against malignant gliomas. Clin Cancer Res. 2017;23(20):6215-6226.
[176]
Mehta RK, Pal S, Kondapi K, et al. Low-dose hsp90 inhibitor selectively radiosensitizes hnscc and pancreatic xenografts. Clin Cancer Res. 2020;26(19):5246-5257.
[177]
Wagner AJ, Agulnik M, Heinrich MC, et al. Dose-escalation study of a second-generation non-ansamycin HSP90 inhibitor, onalespib (at13387), in combination with imatinib in patients with metastatic gastrointestinal stromal tumour. Eur J Cancer. 2016;61:94-101.
[178]
Subramaniam DS, Warner EA, Giaccone G. Ganetespib for small cell lung cancer. Expert Opin Investig Drugs. 2017;26(1):103-108.
[179]
Ying W, Du Z, Sun L, et al. Ganetespib, a unique triazolone-containing hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy. Mol Cancer Ther. 2012;11(2):475-484.
[180]
Youssef ME, Cavalu S, Hasan AM, Yahya G, Abd-Eldayem MA, Saber S. Role of ganetespib, an HSP90 inhibitor, in cancer therapy: from molecular mechanisms to clinical practice. Int J Mol Sci. 2023;24(5).
[181]
Eyermann CE, Haley JD, Alexandrova EM. The hsp-RTK-Akt axis mediates acquired resistance to ganetespib in HER2-positive breast cancer. Cell Death Dis. 2021;12(1):126.
[182]
Jhaveri K, Wang R, Teplinsky E, et al. A phase i trial of ganetespib in combination with paclitaxel and trastuzumab in patients with human epidermal growth factor receptor-2 (HER2)-positive metastatic breast cancer. Breast Cancer Res. 2017;19(1):89.
[183]
Wong KM, Noonan S, O'Bryant C, Jimeno A. Alectinib for the treatment of ALK-positive stage iv non-small cell lung cancer. Drugs Today (Barc). 2015;51(3):161-170.
[184]
Li HJ, Wang QS, Han W, et al. Anti-nsclc activity in vitro of hsp90(n) inhibitor kw-2478 and complex crystal structure determination of hsp90(n)-kw-2478. J Struct Biol. 2021;213(2):107710.
[185]
Yong K, Cavet J, Johnson P, et al. Phase i study of kw-2478, a novel hsp90 inhibitor, in patients with B-cell malignancies. Br J Cancer. 2016;114(1):7-13.
[186]
Zeng D, Gao M, Zheng R, et al. The HSP90 inhibitor kw-2478 depletes the malignancy of BCR/ABL and overcomes the imatinib-resistance caused by BCR/ABL amplification. Exp Hematol Oncol. 2022;11(1):33.
[187]
Zhao Y, Xiao D, Zhang L, et al. HSP90 inhibitors 17-AAG and ver-82576 inhibit porcine deltacoronavirus replication in vitro. Vet Microbiol. 2022;265:109316.
[188]
Cavenagh J, Oakervee H, Baetiong-Caguioa P, et al. A phase i/ii study of kw-2478, an hsp90 inhibitor, in combination with bortezomib in patients with relapsed/refractory multiple myeloma. Br J Cancer. 2017;117(9):1295-1302.
[189]
Supko JG, Hickman RL, Grever MR, Malspeis L. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol. 1995;36(4):305-315.
[190]
Miyata Y. Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents. Curr Pharm Des. 2005;11(9):1131-1138.
[191]
Fukuyo Y, Hunt CR, Horikoshi N. Geldanamycin and its anti-cancer activities. Cancer Lett. 2010;290(1):24-35.
[192]
Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell. 1997;89(2):239-250.
[193]
Franke J, Eichner S, Zeilinger C, Kirschning A. Targeting heat-shock-protein 90 (hsp90) by natural products: geldanamycin, a show case in cancer therapy. Nat Prod Rep. 2013;30(10):1299-1323.
[194]
Neckers L, Schulte TW, Mimnaugh E. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs. 1999;17(4):361-373.
[195]
Niikura Y, Ohta S, Vandenbeldt KJ, Abdulle R, McEwen BF, Kitagawa K. 17-AAG, an hsp90 inhibitor, causes kinetochore defects: a novel mechanism by which 17-AAG inhibits cell proliferation. Oncogene. 2006;25(30):4133-4146.
[196]
Talaei S, Mellatyar H, Asadi A, Akbarzadeh A, Sheervalilou R, Zarghami N. Spotlight on 17-AAG as an hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des. 2019;93(5):760-786.
[197]
Wagatsuma A, Takayama Y, Hoshino T, et al. Pharmacological targeting of HSP90 with 17-AAG induces apoptosis of myogenic cells through activation of the intrinsic pathway. Mol Cell Biochem. 2018;445(1-2):45-58.
[198]
Saxena V, Naguib Y, Hussain MD. Folate receptor targeted 17-allylamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric nanoparticles for breast cancer. Colloids Surf B Biointerfaces. 2012;94:274-280.
[199]
Pastvova N, Dolezel P, Mlejnek P. Heat shock protein inhibitor 17-allyamino-17-demethoxygeldanamycin, a potent inductor of apoptosis in human glioma tumor cell lines, is a weak substrate for abcb1 and abcg2 transporters. Pharmaceuticals (Basel). 2021;14(2).
[200]
Pedersen KS, Kim GP, Foster NR, Wang-Gillam A, Erlichman C, McWilliams RR. Phase ii trial of gemcitabine and tanespimycin (17aag) in metastatic pancreatic cancer: a mayo clinic phase ii consortium study. Invest New Drugs. 2015;33(4):963-968.
[201]
Kim SH, Kang JG, Kim CS, et al. The effect of 17-allylamino-17-demethoxygeldanamycin alone or in combination with paclitaxel on anaplastic thyroid carcinoma cells. Endocrine. 2015;48(3):886-893.
[202]
Nguyen DM, Lorang D, Chen GA, Stewart JHT, Tabibi E, Schrump DS. Enhancement of paclitaxel-mediated cytotoxicity in lung cancer cells by 17-allylamino geldanamycin: in vitro and in vivo analysis. Ann Thorac Surg. 2001;72(2):371-378. discussion 378–379.
[203]
Floris G, Sciot R, Wozniak A, et al. The novel HSP90 inhibitor, ipi-493, is highly effective in human gastrostrointestinal stromal tumor xenografts carrying heterogeneous kit mutations. Clin Cancer Res. 2011;17(17):5604-5614.
[204]
Hanson BE, Vesole DH. Retaspimycin hydrochloride (ipi-504): a novel heat shock protein inhibitor as an anticancer agent. Expert Opin Investig Drugs. 2009;18(9):1375-1383.
[205]
Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, et al. Targeted cancer therapy through 17-dmag as an hsp90 inhibitor: overview and current state of the art. Biomed Pharmacother. 2018;102:608-617.
[206]
Hersey P, Bastholt L, Chiarion-Sileni V, et al. Small molecules and targeted therapies in distant metastatic disease. Ann Oncol. 2009;20(6):vi35-40. Suppl 6. Suppl.
[207]
Smyth T, Van Looy T, Curry JE, et al. The HSP90 inhibitor, at13387, is effective against imatinib-sensitive and -resistant gastrointestinal stromal tumor models. Mol Cancer Ther. 2012;11(8):1799-1808.
[208]
Nilsson B, Nilsson O, Ahlman H. Treatment of gastrointestinal stromal tumours: imatinib, sunitinib—and then? Expert Opin Investig Drugs. 2009;18(4):457-468.
[209]
Scaltriti M, Serra V, Normant E, et al. Antitumor activity of the hsp90 inhibitor ipi-504 in HER2-positive trastuzumab-resistant breast cancer. Mol Cancer Ther. 2011;10(5):817-824.
[210]
De Mattos-Arruda L, Cortes J. Breast cancer and HSP90 inhibitors: is there a role beyond the HER2-positive subtype? Breast. 2012;21(4):604-607.
[211]
Modi S, Saura C, Henderson C, et al. A multicenter trial evaluating retaspimycin hcl (ipi-504) plus trastuzumab in patients with advanced or metastatic HER2-positive breast cancer. Breast Cancer Res Treat. 2013;139(1):107-113.
[212]
Sequist LV, Gettinger S, Senzer NN, et al. Activity of ipi-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J Clin Oncol. 2010;28(33):4953-4960.
[213]
Wagner AJ, Chugh R, Rosen LS, et al. A phase i study of the HSP90 inhibitor retaspimycin hydrochloride (ipi-504) in patients with gastrointestinal stromal tumors or soft-tissue sarcomas. Clin Cancer Res. 2013;19(21):6020-6029.
[214]
Shin SC, El-Damasy AK, Lee JH, et al. Structural basis for design of new purine-based inhibitors targeting the hydrophobic binding pocket of hsp90. Int J Mol Sci. 2020;21(24).
[215]
Taldone T, Chiosis G. Purine-scaffold hsp90 inhibitors. Curr Top Med Chem. 2009;9(15):1436-1446.
[216]
Vilenchik M, Solit D, Basso A, et al. Targeting wide-range oncogenic transformation via pu24fcl, a specific inhibitor of tumor hsp90. Chem Biol. 2004;11(6):787-797.
[217]
Anwar MM, Shalaby M, Embaby AM, Saeed H, Agwa MM, Hussein A. Prodigiosin/pu-h71 as a novel potential combined therapy for triple negative breast cancer (tnbc): preclinical insights. Sci Rep. 2020;10(1):14706.
[218]
Caldas-Lopes E, Cerchietti L, Ahn JH, et al. Hsp90 inhibitor pu-h71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci USA. 2009;106(20):8368-8373.
[219]
Soudan H, Saeed H, Eldemellawy M, et al. Heat shock protein 90α inhibitor, pu-h71 in combination with dhea promoting apoptosis in triple-negative breast cancer cell line mda-mb-231. Acta Biochim Pol. 2020;67(4):561-570.
[220]
Dunphy MPS, Pressl C, Pillarsetty N, et al. First-in-human trial of epichaperome-targeted pet in patients with cancer. Clin Cancer Res. 2020;26(19):5178-5187.
[221]
Wang XT, Bao CH, Jia YB, et al. Biib021, a novel hsp90 inhibitor, sensitizes esophageal squamous cell carcinoma to radiation. Biochem Biophys Res Commun. 2014;452(4):945-950.
[222]
Yin X, Zhang H, Lundgren K, Wilson L, Burrows F, Shores CG. Biib021, a novel hsp90 inhibitor, sensitizes head and neck squamous cell carcinoma to radiotherapy. Int J Cancer. 2010;126(5):1216-1225.
[223]
Saif MW, Takimoto C, Mita M, et al. A phase 1, dose-escalation, pharmacokinetic and pharmacodynamic study of biib021 administered orally in patients with advanced solid tumors. Clin Cancer Res. 2014;20(2):445-455.
[224]
Lundgren K, Zhang H, Brekken J, et al. Biib021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein hsp90. Mol Cancer Ther. 2009;8(4):921-929.
[225]
Taldone T, Gozman A, Maharaj R, Chiosis G. Targeting hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol. 2008;8(4):370-374.
[226]
Kim SH, Kang JG, Kim CS, et al. Synergistic cytotoxicity of biib021 with triptolide through suppression of PI3K/Akt/mtor and NF-κB signal pathways in thyroid carcinoma cells. Biomed Pharmacother. 2016;83:22-32.
[227]
Hong D, Said R, Falchook G, et al. Phase i study of biib028, a selective heat shock protein 90 inhibitor, in patients with refractory metastatic or locally advanced solid tumors. Clin Cancer Res. 2013;19(17):4824-4831.
[228]
Isambert N, Delord JP, Soria JC, et al. Debio0932, a second-generation oral heat shock protein (hsp) inhibitor, in patients with advanced cancer-results of a first-in-man dose-escalation study with a fixed-dose extension phase. Ann Oncol. 2015;26(5):1005-1011.
[229]
Bao R, Lai CJ, Qu H, et al. Cudc-305, a novel synthetic HSP90 inhibitor with unique pharmacologic properties for cancer therapy. Clin Cancer Res. 2009;15(12):4046-4057.
[230]
Stenderup K, Rosada C, Gavillet B, Vuagniaux G, Dam TN. Debio 0932, a new oral hsp90 inhibitor, alleviates psoriasis in a xenograft transplantation model. Acta Derm Venereol. 2014;94(6):672-676.
[231]
Donnelly A, Blagg BS. Novobiocin and additional inhibitors of the hsp90 c-terminal nucleotide-binding pocket. Curr Med Chem. 2008;15(26):2702-2717.
[232]
Le Bras G, Radanyi C, Peyrat JF, et al. New novobiocin analogues as antiproliferative agents in breast cancer cells and potential inhibitors of heat shock protein 90. J Med Chem. 2007;50(24):6189-6200.
[233]
Hou Z, Sang S, You H, et al. Mechanism of action of (-)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res. 2005;65(17):8049-8056.
[234]
Fridrich D, Teller N, Esselen M, Pahlke G, Marko D. Comparison of delphinidin, quercetin and (-)-epigallocatechin-3-gallate as inhibitors of the EGFR and the erbb2 receptor phosphorylation. Mol Nutr Food Res. 2008;52(7):815-822.
[235]
Eddy SF, Kane SE, Sonenshein GE. Trastuzumab-resistant HER2-driven breast cancer cells are sensitive to epigallocatechin-3 gallate. Cancer Res. 2007;67(19):9018-9023.
[236]
Zhao H, Zhu W, Zhao X, et al. Efficacy of epigallocatechin-3-gallate in preventing dermatitis in patients with breast cancer receiving postoperative radiotherapy: a double-blind, placebo-controlled, phase 2 randomized clinical trial. JAMA Dermatol. 2022;158(7):779-786.
[237]
Gao F, Yu X, Li M, et al. Deguelin suppresses non-small cell lung cancer by inhibiting EGFR signaling and promoting gsk3β/FBW7-mediated mcl-1 destabilization. Cell Death Dis. 2020;11(2):143.
[238]
Chen L, Jiang K, Chen H, et al. Deguelin induces apoptosis in colorectal cancer cells by activating the p38 mapk pathway. Cancer Manag Res. 2019;11:95-105.
[239]
Boyd J, Han A. Deguelin and its role in chronic diseases. Adv Exp Med Biol. 2016;929:363-375.
[240]
Cho TM, Kim JY, Kim YJ, et al. C-terminal HSP90 inhibitor l80 elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Cancer Lett. 2019;447:141-153.
[241]
Hyun SY, Le HT, Nguyen CT, et al. Development of a novel hsp90 inhibitor nct-50 as a potential anticancer agent for the treatment of non-small cell lung cancer. Sci Rep. 2018;8(1):13924.
[242]
Park JM, Kim YJ, Park S, et al. A novel HSP90 inhibitor targeting the c-terminal domain attenuates trastuzumab resistance in HER2-positive breast cancer. Mol Cancer. 2020;19(1):161.
[243]
Park S, Kim YJ, Park JM, et al. The c-terminal HSP90 inhibitor nct-58 kills trastuzumab-resistant breast cancer stem-like cells. Cell Death Discov. 2021;7(1):354.
[244]
Lee HJ, Min HY, Yong YS, et al. A novel c-terminal heat shock protein 90 inhibitor that overcomes STAT3-wnt-β-catenin signaling-mediated drug resistance and adverse effects. Theranostics. 2022;12(1):105-125.
[245]
Kim JY, Cho TM, Park JM, et al. A novel HSP90 inhibitor sl-145 suppresses metastatic triple-negative breast cancer without triggering the heat shock response. Oncogene. 2022;41(23):3289-3297.
[246]
Zhang A, Qi X, Du F, Zhang G, Li D, Li J. Pnsa, a novel c-terminal inhibitor of HSP90, reverses epithelial-mesenchymal transition and suppresses metastasis of breast cancer cells in vitro. Mar Drugs. 2021;19(2).
[247]
Dai J, Chen A, Zhu M, et al. Penicisulfuranol a, a novel c-terminal inhibitor disrupting molecular chaperone function of hsp90 independent of ATP binding domain. Biochem Pharmacol. 2019;163:404-415.
[248]
Mortensen ACL, Mohajershojai T, Hariri M, Pettersson M, Spiegelberg D. Overcoming limitations of cisplatin therapy by additional treatment with the HSP90 inhibitor onalespib. Front Oncol. 2020;10:532285.
[249]
Park DJ, Park JE, Lee SH, Eliceiri BP, Choi JS, Seo YJ. Protective effect of msc-derived exosomes against cisplatin-induced apoptosis via heat shock protein 70 in auditory explant model. Nanomedicine. 2021;38:102447.
[250]
Vondálová Blanářová O, Jelínková I, Hyršlová Vaculová A, Sova P, Hofmanová J, Kozubík A. Higher anti-tumour efficacy of platinum(iv) complex la-12 is associated with its ability to bypass m-phase entry block induced in oxaliplatin-treated human colon cancer cells. Cell Prolif. 2013;46(6):665-676.
[251]
Karagöz GE, Rüdiger SG. Hsp90 interaction with clients. Trends Biochem Sci. 2015;40(2):117-125.
[252]
Siddiqui FA, Parkkola H, Vukic V, et al. Novel small molecule hsp90/Cdc37 interface inhibitors indirectly target k-ras-signaling. Cancers (Basel). 2021;13(4).
[253]
Brandt GE, Schmidt MD, Prisinzano TE, Blagg BS. Gedunin, a novel hsp90 inhibitor: semisynthesis of derivatives and preliminary structure-activity relationships. J Med Chem. 2008;51(20):6495-6502.
[254]
Patwardhan CA, Fauq A, Peterson LB, Miller C, Blagg BS, Chadli A. Gedunin inactivates the co-chaperone p23 protein causing cancer cell death by apoptosis. J Biol Chem. 2013;288(10):7313-7325.
[255]
Zhang T, Li Y, Yu Y, Zou P, Jiang Y, Sun D. Characterization of celastrol to inhibit hsp90 and cdc37 interaction. J Biol Chem. 2009;284(51):35381-35389.
[256]
Zuo A, Zhao P, Zheng Y, Hua H, Wang X. Tripterine inhibits proliferation, migration and invasion of breast cancer mda-mb-231 cells by up-regulating microrna-15a. Biol Chem. 2019;400(8):1069-1078.
[257]
Yu Y, Hamza A, Zhang T, et al. Withaferin a targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol. 2010;79(4):542-551.
[258]
Mallipeddi H, Thyagarajan A, Sahu RP. Implications of withaferin-a for triple-negative breast cancer chemoprevention. Biomed Pharmacother. 2021;134:111124.
[259]
Kim SH, Hahm ER, Arlotti JA, et al. Withaferin a inhibits in vivo growth of breast cancer cells accelerated by notch2 knockdown. Breast Cancer Res Treat. 2016;157(1):41-54.
[260]
Wang HC, Hu HH, Chang FR, et al. Different effects of 4β-hydroxywithanolide e and withaferin a, two withanolides from solanaceae plants, on the Akt signaling pathway in human breast cancer cells. Phytomedicine. 2019;53:213-222.
[261]
Giordano A, Tommonaro G. Curcumin and cancer. Nutrients. 2019;11(10).
[262]
Jung Y, Xu W, Kim H, Ha N, Neckers L. Curcumin-induced degradation of erbb2: a role for the e3 ubiquitin ligase chip and the michael reaction acceptor activity of curcumin. Biochim Biophys Acta. 2007;1773(3):383-390.
[263]
Lee YS, Chen X, Widiyanto TW, Orihara K, Shibata H, Kajiwara S. Curcumin affects function of hsp90 and drug efflux pump of candida albicans. Front Cell Infect Microbiol. 2022;12:944611.
[264]
Fan Y, Liu Y, Zhang L, Cai F, Zhu L, Xu J. C0818, a novel curcumin derivative, interacts with hsp90 and inhibits hsp90 atpase activity. Acta Pharm Sin B. 2017;7(1):91-96.
[265]
Abdelmoaty AAA, Zhang P, Lin W, Fan YJ, Ye SN, Xu JH. C0818, a novel curcumin derivative, induces ros-dependent cytotoxicity in human hepatocellular carcinoma cells in vitro via disruption of hsp90 function. Acta Pharmacol Sin. 2022;43(2):446-456.
[266]
Ma CY, Ji WT, Chueh FS, et al. Butein inhibits the migration and invasion of SK-HEP-1 human hepatocarcinoma cells through suppressing the erk, JNK, p38, and upa signaling multiple pathways. J Agric Food Chem. 2011;59(16):9032-9038.
[267]
Padmavathi G, Rathnakaram SR, Monisha J, Bordoloi D, Roy NK, Kunnumakkara AB. Potential of butein, a tetrahydroxychalcone to obliterate cancer. Phytomedicine. 2015;22(13):1163-1171.
[268]
Tuli HS, Joshi R, Aggarwal D, et al. Molecular mechanisms underlying chemopreventive potential of butein: current trends and future perspectives. Chem Biol Interact. 2021;350:109699.
[269]
Shi X, Sun X. Regulation of paclitaxel activity by microtubule-associated proteins in cancer chemotherapy. Cancer Chemother Pharmacol. 2017;80(5):909-917.
[270]
Kessous R, Matanes E, Laskov I, et al. Carboplatin plus paclitaxel weekly dose-dense chemotherapy for high-grade ovarian cancer: a re-evaluation. Acta Obstet Gynecol Scand. 2021;100(3):453-458.
[271]
Hall JA, Seedarala S, Rice N, Kopel L, Halaweish F, Blagg BS. Cucurbitacin d is a disruptor of the HSP90 chaperone machinery. J Nat Prod. 2015;78(4):873-879.
[272]
Verma S, Singh A, Mishra A. Dual inhibition of chaperoning process by taxifolin: molecular dynamics simulation study. J Mol Graph Model. 2012;37:27-38.
[273]
Chen X, Liu P, Wang Q, et al. Dcz3112, a novel hsp90 inhibitor, exerts potent antitumor activity against HER2-positive breast cancer through disruption of hsp90-Cdc37 interaction. Cancer Lett. 2018;434:70-80.
[274]
Li L, Wang L, You QD, Xu XL. Heat shock protein 90 inhibitors: an update on achievements, challenges, and future directions. J Med Chem. 2020;63(5):1798-1822.
[275]
Kawazoe A, Itahashi K, Yamamoto N, et al. Tas-116 (pimitespib), an oral HSP90 inhibitor, in combination with nivolumab in patients with colorectal cancer and other solid tumors: an open-label, dose-finding, and expansion phase ib trial (epoc1704). Clin Cancer Res. 2021;27(24):6709-6715.
[276]
Maloney A, Workman P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther. 2002;2(1):3-24.
[277]
daSilva VC, Ramos CH. The network interaction of the human cytosolic 90 kda heat shock protein hsp90: a target for cancer therapeutics. J Proteomics. 2012;75(10):2790-2802.
[278]
Pearl LH, Prodromou C. Structure and mechanism of the hsp90 molecular chaperone machinery. Annu Rev Biochem. 2006;75:271-294.
[279]
Maiti S, Picard D. Cytosolic hsp90 isoform-specific functions and clinical significance. Biomolecules. 2022;12(9).
[280]
Mishra SJ, Khandelwal A, Banerjee M, et al. Selective inhibition of the hsp90α isoform. Angew Chem Int Ed Engl. 2021;60(19):10547-10551.
[281]
Mishra SJ, Liu W, Beebe K, et al. The development of hsp90β-selective inhibitors to overcome detriments associated with pan-hsp90 inhibition. J Med Chem. 2021;64(3):1545-1557.
[282]
Yang F, Wang Y, Yan D, et al. Binding mechanism of inhibitors to heat shock protein 90 investigated by multiple independent molecular dynamics simulations and prediction of binding free energy. Molecules. 2023;28(12).
[283]
Chen J, Wang J, Lai F, Wang W, Pang L, Zhu W. Dynamics revelation of conformational changes and binding modes of heat shock protein 90 induced by inhibitor associations. RSC Adv. 2018;8(45):25456-25467.
[284]
Karthik HN, Murali Sharma P, Garampalli RH. Molecular docking and dynamics simulation study of quinones and pyrones from alternaria solani and alternaria alternata with HSP90: an important therapeutic target of cancer. J Biomol Struct Dyn. 2023:1-13.
[285]
Dike PP, Bhowmick S, Eldesoky GE, Wabaidur SM, Patil PC, Islam MA. In silico identification of small molecule modulators for disruption of hsp90-Cdc37 protein-protein interaction interface for cancer therapeutic application. J Biomol Struct Dyn. 2022;40(5):2082-2098.
[286]
Peng C, Zhao F, Li H, Li L, Yang Y, Liu F. HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death Dis. 2022;13(11):929.
[287]
Costa T, Raghavendra NM, Penido C. Natural heat shock protein 90 inhibitors in cancer and inflammation. Eur J Med Chem. 2020;189:112063.

RIGHTS & PERMISSIONS

2024 2024 The Authors. MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/