Stimuli-Responsive Naphthalene Diimide-Based Charge-Transfer Liquid Materials Showing Thermal Response to Tune Photoluminescent Properties

Takumi Omura , Shogo Morisako , Kyosuke Isoda

Materials and Interfaces ›› 2025, Vol. 2 ›› Issue (2) : 180 -190.

PDF (2011KB)
Materials and Interfaces ›› 2025, Vol. 2 ›› Issue (2) :180 -190. DOI: 10.53941/mi.2025.100014
Article
research-article

Stimuli-Responsive Naphthalene Diimide-Based Charge-Transfer Liquid Materials Showing Thermal Response to Tune Photoluminescent Properties

Author information +
History +
PDF (2011KB)

Abstract

Stimuli-responsive luminescent liquid materials have recently attracted considerable attention due to their potential to address the limitations of solid-state materials, such as the necessity of organic solvents and the difficulty in fabricating composite systems. Liquid-state materials offer superior processability and enable facile modulation of photophysical properties by simply selecting appropriate solutes. In particular, molecular designs incorporating electron-donating or electron-accepting properties into liquid materials allow to form charge-transfer (CT) complexes upon dissolving solutes with their opposite electronic properties, altering both solution color and photoluminescence (PL) behavior. In this study, we developed a room-temperature supercooled liquid material based on an electron-accepting naphthalene diimide (NADI) derivative, BR-Val-NADI. Upon dissolving electron-rich naphthalene-based derivatives (NA-##s) into BR-Val-NADI, NA-##/BR-Val-NADI with CT character were readily obtained as solutions, exhibiting various colors and PL properties. NA-##/BR-Val-NADI also functioned as printable PL inks that could be applied onto various substrates such as glass and paper. Notably, the PL properties of NA-##/BR-Val-NADI were responsive to thermal stimuli, with temperature-induced changes in PL color and PL off/on switching. These results highlight the potential of NA-##/BR-Val-NADI as a new class of stimuli-responsive soft materials for applications in printable photonic devices and smart sensing platforms.

Keywords

naphthalene diimide / stimuli response / liquid material / stimuli-responsive liquid / photoluminescence

Cite this article

Download citation ▾
Takumi Omura, Shogo Morisako, Kyosuke Isoda. Stimuli-Responsive Naphthalene Diimide-Based Charge-Transfer Liquid Materials Showing Thermal Response to Tune Photoluminescent Properties. Materials and Interfaces, 2025, 2(2): 180-190 DOI:10.53941/mi.2025.100014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yerushalmi R.; Scherz A.; van der Boom M.E.; Kraatz H.-B. Stimuli responsive materials: New avenues toward smart organic devices. J. Mater. Chem. 2005, 15, 4480-4487. https://doi.org/10.1039/B505212B.

[2]

Huang Y.; Ning L.; Zhang X.; Zhou Q.; Gong Q.; Zhang Q. Stimuli-fluorochromic smart organic materials. Chem. Soc. Rev. 2024, 53, 1090-1166. https://doi.org/10.1039/D2CS00976E.

[3]

Yan D.; Wang Z.; Zhang Z. Stimuli-Responsive Crystalline Smart Materials: From Rational Design and Fabrication to Applications. Acc. Chem. Res. 2022, 55, 1047-1058. https://doi.org/10.1021/acs.accounts.2c00027.

[4]

Sun H.; Shen S.; Li C.; Yu W.; Xie Q.; Wu D.; Zhu L. Stimuli-Responsive Dual-Emission Property of Single- Luminophore-Based Materials. Adv. Funct. Mater. 2025, 35, 2415400. https://doi.org/10.1002/adfm.202415400.

[5]

Wu W.; Chen K.; Wang T.; Wang N.; Huang X.; Zhou L.; Wang Z.; Hao H. Stimuli-responsive flexible organic crystals. J. Mater. Chem. C 2023, 11, 2026-2052. https://doi.org/10.1039/D2TC04642C.

[6]

Huang L.; Qian C.; Ma Z. Stimuli-Responsive Purely Organic Room-Temperature Phosphorescence Materials. Chem.- Eur. J. 2020, 26, 11914-11930. https://doi.org/10.1002/chem.202000526.

[7]

Karunakar K.K.; Cheriyan B.V.; Anandakumar R.; Murugathirumal A.; Kataria K.; Yabase L. Stimuli-Responsive Smart Materials: Bridging the Gap Between Biotechnology and Regenerative Medicine. Bioprinting 2025, 48, e00415. https://doi.org/10.1016/j.bprint.2025.e00415.

[8]

Zhao J.; Du J.; Qin T.; Zhang S.X.-A.; Sheng L. “Confined Eutectic” Strategy for Visual Refrigeration Responsive Fluorescent Materials with Easy Preparation and Multi-Color Tunability. Adv. Sci. 2025, 2503779. https://doi.org/10.1002/advs.202503779.

[9]

Du J.; Sheng L.; Xu Y.; Chen Q.; Gu C.; Li M.; Zhang S.X.-A. Printable Off-On Thermoswitchable Fluorescent Materials for Programmable Thermally Controlled Full-Color Displays and Multiple Encryption. Adv. Mater. 2021, 33, 2008055. https://doi.org/10.1002/adma.202008055.

[10]

Du J.; Sheng L.; Chen Q.; Xu Y.; Li W.; Wang X.; Li M.; Zhang S.X.-A. Simple and general platform for highly adjustable thermochromic fluorescent materials and multi-feasible applications. Mater. Horiz. 2019, 6, 1654-1662. https://doi.org/10.1039/C9MH00253G.

[11]

Davey R.J.; Schroeder S.L.M.; ter Horst J.H. Nucleation of Organic Crystals—A Molecular Perspective. Angew. Chem. Int. Ed. 2013, 52, 2166-2179. https://doi.org/10.1002/anie.201204824.

[12]

Liang C. Organic Polymorphs Based on AIE-Active Molecules: Preparation, Characterization, and Application. Cryst. Growth Des. 2024, 24, 7322-7341. https://doi.org/10.1021/acs.cgd.4c00499.

[13]

Chung H.; Diao Y. Polymorphism as an emerging design strategy for high performance organic electronics. J. Mater. Chem. C 2016, 4, 3915-3933. https://doi.org/10.1039/C5TC04390E.

[14]

Nakanishi T. (Ed.) Functional Organic Liquids; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. i-xii.

[15]

Ghosh A.; Nakanishi T. Frontiers of solvent-free functional molecular liquids. Chem. Commum. 2017, 53, 10344-10357. https://doi.org/10.1039/C7CC05883G.

[16]

Tateyama A.; Nakanishi T. Responsive molecular liquid materials. Responsive Mater. 2023, 1, e20230001. https://doi.org/10.1002/rpm.20230001.

[17]

Lu F.; Nakanishi T. Solvent-Free Luminous Molecular Liquids. Adv. Opt. Mater. 2019, 7, 1900176. https://doi.org/10.1002/adom.201900176.

[18]

Wakchaure V.C.; Channareddy G.; Babu S.S. Solvent-Free Organic Liquids: An Efficient Fluid Matrix for Unexplored Functional Hybrid Materials. Acc. Chem. Res. 2024, 57, 670-684. https://doi.org/10.1021/acs.accounts.3c00670.

[19]

Tateyama A.; Nagura K.; Yamanaka M.; Nakanishi T. Alkyl-π Functional Molecular Gels: Control of Elastic Modulus and Improvement of Electret Performance. Angew. Chem. Int. Ed. 2024, 63, e202402874. https://doi.org/10.1002/anie.202402874.

[20]

Omura T.; Morisako S.; Isoda K. Amino acid-appended pyromellitic diimide liquid materials, their photoluminescence, and thermal response turning photoluminescence off. Chem. Commum. 2024, 60, 9352-9355. https://doi.org/10.1039/D4CC02229G.

[21]

Ogoshi T.; Azuma S.; Wada K.; Tamura Y.; Kato K.; Ohtani S.; Kakuta T.; Yamagishi T.-A. Exciplex Formation by Complexation of an Electron-Accepting Guest in an Electron-Donating Pillar [5] arene Host Liquid. J. Am. Chem. Soc. 2024, 146, 9828-9835. https://doi.org/10.1021/jacs.3c14582.

[22]

Xu Z.; Wang Z.; Yao W.; Gao Y.; Li Y.; Shi H.; Huang W.; An Z. Supercooled Liquids with Dynamic Room Temperature Phosphorescence Using Terminal Hydroxyl Engineering. Angew. Chem. Int. Ed. 2023, 62, e202301564. https://doi.org/10.1002/anie.202301564.

[23]

Tanabe Y.; Tsutsui H.; Matsuda S.; Shikita S.; Yasuda T.; Isoda K. Pyromellitic-Diimide-Based Liquid Material Forming an Exciplex with Naphthalene. ChemPhotoChem 2023, 7, e202200287. https://doi.org/10.1002/cptc.202200287.

[24]

Sato Y.; Mutoh Y.; Morishita S.; Tsurumachi N.; Isoda K. Stimulus-Responsive Supercooled π-Conjugated Liquid and Its Application in Rewritable Media. J. Phys. Chem. Lett. 2021, 12, 3014-3018. https://doi.org/10.1021/acs.jpclett.1c00247.

[25]

Ikenaga A.; Akiyama Y.; Ishiyama T.; Gon M.; Tanaka K.; Chujo Y.; Isoda K. Stimuli-Responsive Self-Assembly of π-Conjugated Liquids Triggers Circularly Polarized Luminescence. ACS Appl. Mater. Interfaces 2021, 13, 47127-47133. https://doi.org/10.1021/acsami.1c13119.

[26]

Isoda K.; Matsubara M.; Ikenaga A.; Akiyama Y.; Mutoh Y. Reversibly/irreversibly stimuli-responsive inks based on N-heteroacene liquids. J. Mater. Chem. C 2019, 7, 14075-14079. https://doi.org/10.1039/C9TC05195C.

[27]

Isoda K.; Ishiyama T.; Mutoh Y.; Matsukuma D. Stimuli-Responsive Room-Temperature N-Heteroacene Liquid: In Situ Observation of the Self-Assembling Process and Its Multiple Properties. ACS Appl. Mater. Interfaces 2019, 11, 12053-12062. https://doi.org/10.1021/acsami.8b21695.

[28]

Giri N.; Del Pópolo M.G.; Melaugh G.; Greenaway R.L.; Rätzke K.; Koschine T.; Pison L.; Gomes M.F.C.; Cooper A.I.; James S.L. Liquids with permanent porosity. Nature 2015, 527, 216-220. https://doi.org/10.1038/nature16072.

[29]

Chung K.; Kwon M.S.; Leung B.M.; Wong-Foy A.G.; Kim M.S.; Kim J.; Takayama S.; Gierschner J.; Matzger A.J.; Kim J. Shear-Triggered Crystallization and Light Emission of a Thermally Stable Organic Supercooled Liquid. ACS Cent. Sci. 2015, 1, 94-102. https://doi.org/10.1021/acscentsci.5b00091.

[30]

Clarke C.J.; Tu W.-C.; Levers O.; Bröhl A.; Hallett J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747-800. https://doi.org/10.1021/acs.chemrev.7b00571.

[31]

Horváth I.T. Introduction: Sustainable Chemistry. Chem. Rev. 2018, 118, 369-371. https://doi.org/10.1021/acs.chemrev.7b00721.

[32]

Ghosh A.; Yoshida M.; Suemori K.; Isago H.; Kobayashi N.; Mizutani Y.; Kurashige Y.; Kawamura I.; Nirei M.; Yamamuro O.; et al. Soft chromophore featured liquid porphyrins and their utilization toward liquid electret applications. Nat. Commun. 2019, 10, 4210. https://doi.org/10.1038/s41467-019-12249-8.

[33]

Goudappagouda; Manthanath, A.; Wakchaure, V. C.; Ranjeesh, K. C.; Das, T.; Vanka, K.; Nakanishi, T.; Babu, S. S. Paintable Room-Temperature Phosphorescent Liquid Formulations of Alkylated Bromonaphthalimide. Angew. Chem. Int. Ed. 2019, 58, 2284-2288. https://doi.org/10.1002/anie.201811834.

[34]

Santhosh Babu S.; Aimi J.; Ozawa H.; Shirahata N.; Saeki A.; Seki S.; Ajayaghosh A.; Möhwald H.; Nakanishi T. Solvent-Free Luminescent Organic Liquids. Angew. Chem. Int. Ed. 2012, 51, 3391-3395. https://doi.org/10.1002/anie.201108853.

[35]

Babu S.S.; Hollamby M.J.; Aimi J.; Ozawa H.; Saeki A.; Seki S.; Kobayashi K.; Hagiwara K.; Yoshizawa M.; Möhwald H.; et al. Nonvolatile liquid anthracenes for facile full-colour luminescence tuning at single blue-light excitation. Nat. Commun. 2013, 4, 1969. https://doi.org/10.1038/ncomms2969.

[36]

Wakchaure V.C.; Pillai L.V.; Goudappagouda; Ranjeesh K.C.; Chakrabarty S.; Ravindranathan S.; Rajamohanan P.R.; Babu S.S. Charge transfer liquid: A stable donor-acceptor interaction in the solvent-free liquid state. Chem. Commum. 2019, 55, 9371-9374. https://doi.org/10.1039/C9CC03671G.

[37]

Iguchi H.; Furutani H.; Kimizuka N. Ionic Charge-Transfer Liquid Crystals Formed by Alternating Supramolecular Copolymerization of Liquid π-Donors and TCNQ. Front. Chem. 2021, 9, 657246. https://doi.org/10.3389/fchem.2021.657246.

[38]

Al Kobaisi M.; Bhosale S.V.; Latham K.; Raynor A.M.; Bhosale S.V. Functional Naphthalene Diimides: Synthesis, Properties, and Applications. Chem. Rev. 2016, 116, 11685-11796. https://doi.org/10.1021/acs.chemrev.6b00160.

[39]

Bhosale S.V.; Jani C.H.; Langford S.J. Chemistry of naphthalene diimides. Chem. Soc. Rev. 2008, 37, 331-342. https://doi.org/10.1039/B615857A.

[40]

Langford S.J.; Latter M.J.; Woodward C.P. Progress in Charge Transfer Systems Utilizing Porphyrin Donors and Simple Aromatic Diimide Acceptor Units. Photochem. Photobiol. 2006, 82, 1530-1540. https://doi.org/10.1111/j.1751-1097.2006.tb09808.x.

[41]

Wang Y.; Wu H.; Stoddart J.F. Molecular Triangles: A New Class of Macrocycles. Acc. Chem. Res. 2021, 54, 2027-2039. https://doi.org/10.1021/acs.accounts.1c00108.

[42]

Hartmann D.; Penty S.E.; Zwijnenburg M.A.; Pal R.; Barendt T.A. A Bis-Perylene Diimide Macrocycle Chiroptical Switch. Angew. Chem. Int. Ed. 2025, 64, e202501122. https://doi.org/10.1002/anie.202501122.

[43]

Tominaga M.; Kawahata M.; Itoh T.; Yamaguchi K. Spherical Aggregates and Crystal Structure of Naphthalenediimide-Based Macrocycle and Complexation with Perylene. Cryst. Growth Des. 2018, 18, 37-41. https://doi.org/10.1021/acs.cgd.7b01361.

[44]

Beldjoudi Y.; Narayanan A.; Roy I.; Pearson T.J.; Cetin M.M.; Nguyen M.T.; Krzyaniak M.D.; Alsubaie F.M.; Wasielewski M.R.; Stupp S.I.; et al. Supramolecular Tessellations by a Rigid Naphthalene Diimide Triangle. J. Am. Chem. Soc. 2019, 141, 17783-17795. https://doi.org/10.1021/jacs.9b08758.

[45]

Ling Q.-H.; Zhu J.-L.; Qin Y.; Xu L. Naphthalene diimide- and perylene diimide-based supramolecular cages. Mater. Chem. Front. 2020, 4, 3176-3189. https://doi.org/10.1039/D0QM00540A.

[46]

Jhulki S.; Feriante C.H.; Mysyk R.; Evans A.M.; Magasinski A.; Raman A.S.; Turcheniuk K.; Barlow S.; Dichtel W.R.; Yushin G.; et al. A Naphthalene Diimide Covalent Organic Framework: Comparison of Cathode Performance in Lithium-Ion Batteries with Amorphous Cross-linked and Linear Analogues, and Its Use in Aqueous Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 350-356. https://doi.org/10.1021/acsaem.0c02281.

[47]

van der Jagt, R.; Vasileiadis A.; Veldhuizen H.; Shao P.; Feng X.; Ganapathy S.; Habisreutinger N.C.; van der Veen, M.A.; Wang C.; Wagemaker M.; Wagemaker M.; et al. Synthesis and Structure-Property Relationships of Polyimide Covalent Organic Frameworks for Carbon Dioxide Capture and (Aqueous) Sodium-Ion Batteries. Chem. Mater. 2021, 33, 818-833. https://doi.org/10.1021/acs.chemmater.0c03218.

[48]

Wang L.-L.; Ni X.-Q.; Han Y.-J.; Zhang J.; Luo H.-B.; Qiao Q.; Wu Y.-P.; Ren X.-M. Acidified naphthalene diimide covalent organic frameworks with superior proton conduction for solid-state proton batteries. J. Mater. Chem. C 2025, 13, 4398-4404. https://doi.org/10.1039/D4TC04322G.

[49]

Huang Z.; Zhang Y.; Zhao S.; Xu Y.; Qi X.; Zhang L.; Zhao Y. Two-dimensional covalent organic frameworks with spatial-distribution defined D-A structures for efficient near-infrared photothermal conversion. Microporous Mesoporous Mater. 2022, 343, 112191. https://doi.org/10.1016/j.micromeso.2022.112191.

[50]

Katz H.E.; Johnson J.; Lovinger A.J.; Li W. Naphthalenetetracarboxylic Diimide-Based n-Channel Transistor Semiconductors: Structural Variation and Thiol-Enhanced Gold Contacts. J. Am. Chem. Soc. 2000, 122, 7787-7792. https://doi.org/10.1021/ja000870g.

[51]

Katz H.E.; Lovinger A.J.; Johnson J.; Kloc C.; Siegrist T.; Li W.; Lin Y.Y.; Dodabalapur A. A soluble and air-stable organic semiconductor with high electron mobility. Nature 2000, 404, 478-481. https://doi.org/10.1038/35006603.

[52]

He T.; Stolte M.; Burschka C.; Hansen N.H.; Musiol T.; Kälblein D.; Pflaum J.; Tao X.; Brill J.; Würthner F. Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air. Nat. Commun. 2015, 6, 5954. https://doi.org/10.1038/ncomms6954.

[53]

Kao C.-C.; Lin P.; Shen Y.-Y.; Yan J.-Y.; Ho J.-C.; Lee C.-C.; Chan L.-H. Solid-state structure of the naphthalene- based n-type semiconductor, and performance improved with Mo-based source/drain electrodes. Synth. Met. 2008, 158, 299-305. https://doi.org/10.1016/j.synthmet.2008.01.019.

[54]

Basak S.; Nandi N.; Paul S.; Banerjee A. Luminescent Naphthalene Diimide-Based Peptide in Aqueous Medium and in Solid State: Rewritable Fluorescent Color Code. ACS Omega 2018, 3, 2174-2182. https://doi.org/10.1021/acsomega.7b01813.

[55]

Sakai N.; Mareda J.; Vauthey E.; Matile S. Core-substituted naphthalenediimides. Chem. Commum. 2010, 46, 4225-4237. https://doi.org/10.1039/C0CC00078G.

[56]

Yuan W.Z.; Lu P.; Chen S.; Lam J.W.Y.; Wang Z.; Liu Y.; Kwok H.S.; Ma Y.; Tang B.Z. Changing the Behavior of Chromophores from Aggregation-Caused Quenching to Aggregation-Induced Emission: Development of Highly Efficient Light Emitters in the Solid State. Adv. Mater. 2010, 22, 2159-2163. https://doi.org/10.1002/adma.200904056.

[57]

Pervin R.; Manian A.; Chen Z.; Christofferson A.J.; Owyong T.C.; Bradley S.J.; White J.M.; Ghiggino K.P.; Russo S.P.; Wong W.W.H. Medium effects on the fluorescence of Imide-substituted naphthalene diimides. J. Photochem. Photobiol. A 2023, 436, 114364. https://doi.org/10.1016/j.jphotochem.2022.114364.

[58]

Hong Y.; Lam J.W.Y.; Tang B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388. https://doi.org/10.1039/C1CS15113D.

[59]

Molla M.R.; Ghosh S. Aqueous self-assembly of chromophore-conjugated amphiphiles. Phys. Chem. Chem. Phys. 2014, 16, 26672-26683. https://doi.org/10.1039/C4CP03791J.

[60]

Lasitha P.; Prasad E. Orange red emitting naphthalene diimide derivative containing dendritic wedges: Aggregation induced emission (AIE) and detection of picric acid (PA). RSC Adv. 2015, 5, 41420-41427. https://doi.org/10.1039/C5RA04857E.

[61]

Mollick S.; Mukherjee S.; Kim D.; Qiao Z.; Desai A.V.; Saha R.; More Y.D.; Jiang J.; Lah M.S.; Ghosh S.K. Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal-Organic Polyhedra. Angew. Chem. Int. Ed. 2019, 58, 1041-1045. https://doi.org/10.1002/anie.201811037.

[62]

Frisch M.J.; Trucks G.W.; Schlegel H.B.; Scuseria G.E.; Robb M.A.; Cheeseman J.R.; Scalmani G.; Barone V.; Petersson G.A.; et al. Gaussian 16, Revision C.01; Inc.: Wallingford, CT, USA, 2019.

[63]

Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456-1465. https://doi.org/10.1002/jcc.21759.

[64]

Bauernschmitt R.; Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454-464. https://doi.org/10.1016/0009-2614(96)00440-X.

[65]

Casida M.E.; Jamorski C.; Casida K.C.; Salahub D.R. Molecular excitation energies to high-lying bound states from time- dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998, 108, 4439-4449. https://doi.org/10.1063/1.475855.

[66]

Yanai T.; Tew D.P.; Handy N.C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51-57. https://doi.org/10.1016/j.cplett.2004.06.011.

[67]

Chirico R.D.; Knipmeyer S.E.; Nguyen A.; Steele W.V. The thermodynamic properties to the temperature 700 K of naphthalene and of 2,7-dimethylnaphthalene. J. Chem. Thermodyn. 1993, 25, 1461-1494. https://doi.org/10.1006/jcht.1993.1148.

[68]

Okamoto N.; Oguni M. Discovery of crystal nucleation proceeding much below the glass transition temperature in a supercooled liquid. Solid State Commun. 1996, 99, 53-56. https://doi.org/10.1016/0038-1098(96)00139-1.

[69]

Dai J.; McKee M.L.; Samokhvalov A. Adsorption of naphthalene and indole on F300 MOF in liquid phase by the complementary spectroscopic, kinetic and DFT studies. J. Porous Mater. 2014, 21, 709-727. https://doi.org/10.1007/s10934-014-9818-3.

[70]

Berlman I.B.; Weinreb A. On the fluorescence spectrum and decay time of naphthalene. Mol. Phys. 1962, 5, 313-319. https://doi.org/10.1080/00268976200100351.

AI Summary AI Mindmap
PDF (2011KB)

1498

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/