PDF
(2189KB)
Abstract
Photochromic materials are pivotal for rewritable smart media, yet conventional systems suffer from sluggish kinetics, UV dependency, and low optical contrast. Herein, we present a visible-light-responsive Sn-TiO2/phosphotungstic acid (PTA) nanocomposite film mediated by polyvinylpyrrolidone (PVP) that addresses these challenges through interfacial engineering and bandgap modulation. Sn-doped TiO2 nanoparticles, synthesized hydrothermally, are covalently linked to phosphotungstic acid (PTA) clusters via PVP-assisted dispersion, enabling efficient charge separation under 450 nm illumination. The Sn-TiO2/PTA/PVP nanocomposite film achieves ultrafast coloration within 10 s, attributed to the reduction of W6⁺ to W5⁺ in PTA. The colored state exhibits remarkable air stability (48 h) and rapid recovery (<30 min) via H2O2 vapor, sustaining >80 reversible cycles without degradation. With a narrowed bandgap (2.23 eV) and broadband intervalence charge transfer (IVCT) absorption (600-800 nm), the film demonstrates high-contrast black-state coloration and 2-day legibility as a rewritable medium. This work overcomes the limitations of organic dyes and UV-dependent systems, offering an inorganic, eco-friendly platform for smart displays, anti-counterfeiting labels, and energy-efficient photochromic technologies.
Keywords
photochromic nanocomposites
/
visible-light response
/
Sn-doped titanium dioxide
/
phosphotungstic acid
/
rewritable smart media
Cite this article
Download citation ▾
Yao Dou, Dongliang Wei, Yongli Qin, Zhen Zhang, Yun Zhang, Wenshou Wang.
Sn-TiO2/PTA Nanocomposite Films for High-Contrast Rewritable Media with Visible-Light-Driven Black Coloration.
Materials and Interfaces, 2025, 2(2): 143-154 DOI:10.53941/mi.2025.100012
| [1] |
Ke Y.; Chen J.; Lin G.; Wang S.; Zhou Y.; Yin J.; Lee P.S.; Long Y.Smart Windows: Electro-, Thermo-, Mechano-,Photochromics, and Beyond. Adv. Energy Mater. 2019, 9, 1902066.
|
| [2] |
Chun S.Y.; Park S.; Lee S.I.; Nguyen H.D.; Lee K.-K.; Hong S.; Han C.-H.; Cho M.; Choi H.-K.; Kwak K. Operando Raman and UV-Vis spectrosscopic investigation of the coloring and bleaching mechanism of self-powered photochromic devices for smart windows. Nano Energy 2021, 82, 105721.
|
| [3] |
Pang Q.; Bian L.; Xu J.; Jia Y.; Wang C.; Zhang Y.; Ju Q.; Wu Q.; Fang Z. Sunlight-Sensitizing Switchable Photochromic Transparent Aesthetic Wood for Smart Windows. ACS Sustain. Chem. Eng. 2024, 12, 10506-10516.
|
| [4] |
Meng W.; Kragt A.J.J.; Gao Y.; Brembilla E.; Hu X.; van der Burgt J.S.; Schenning A.; Klein T.; Zhou G.; van den Ham E.R.; et al. Scalable Photochromic Film for Solar Heat and Daylight Management. Adv. Mater. 2024, 36, e2304910.
|
| [5] |
Ma T.; Li B.; Zhu Y.; Wu S.; Zhao X.; Chu X.; Tian S. Enhanced photochromic performance of Zn-doped W18O49-based films for smart windows. J. Mater. Chem. C 2024, 12, 10218-10225.
|
| [6] |
Sheng L.; Li M.; Zhu S.; Li H.; Xi G.; Li Y.G.; Wang Y.; Li Q.; Liang S.; Zhong K.; et al. Hydrochromic molecular switches for water-jet rewritable paper. Nat. Commun. 2014, 5, 3044.
|
| [7] |
Smith A.T.; Ding H.; Gorski A.; Zhang M.; Gitman P.A.; Park C.; Hao Z.; Jiang Y.; Williams B.L.; Zeng S.; et al. Multi-color Reversible Photochromisms via Tunable Light-Dependent Responses. Matter 2020, 2, 680-696.
|
| [8] |
Sarker S.; Macharia D.K.; Zhang Y.; Zhu Y.; Li X.; Wen M.; Meng R.; Yu N.; Chen Z.; Zhu M. Synthesis of MnO2-Ag Nanojunctions with Plasmon-Enhanced Photocatalytic and Photothermal Effects for Constructing Rewritable Mono-/Multi-Color Fabrics. ACS Appl. Mater. Interfaces 2022, 14, 5545-5557.
|
| [9] |
Wang W.; Yi L.; Zheng Y.; Lu J.; Jiang A.; Wang D. Photochromic and mechanochromic cotton fabric for flexible rewritable media based on acrylate latex with spiropyran cross-linker. Compos. Commun. 2023, 37, 101455.
|
| [10] |
Cui B.; Guo C.; Zhang Z.; Fu G. Core-shell ZnCo-PBA@WO2.72 heterojunctions with enhanced photo-responsive color switching ability for highly efficient rewritable media and information encryption. Chem. Eng. J. 2023, 477, 147037.
|
| [11] |
Zhang J.; Guo M.; Su Y.; Wu W.; Wang S.; Yang R.; Xu C.; Yin H.; Xu J.; Wang X. Photochromic ionogel with a wide temperature range and fatigue resistance for high-resolution rewritable information record. Chem. Eng. J. 2024, 495, 153263.
|
| [12] |
Chen T.; Xu B.; Han J.; Zhu M.; Zhang J.; Li Z. Chelating Coordination Regulated Photochromic Electrospun Nanofibers for Waterproof and Long-Color-Retention Rewritable Wearables. ACS Appl. Mater. Interfaces 2024, 16, 13305-13315.
|
| [13] |
Li P.; Zhang Z.; Gao X.; Sun H.; Peng D.; Zou H.; Zhang Q.; Hao X. Fast self-bleaching Nb2O5-based photochromics for high security dynamic anti-counterfeiting and optical storage applications. Chem. Eng. J. 2022, 435, 134801.
|
| [14] |
Li X.; Lin H.; Lin S.; Li P.; Wang P.; Xu J.; Cheng Y.; Zhang Q.; Wang Y. Rare-Earth-Ion Doped Bi1.5ZnNb1.5O7 Photochromics: A Fast Self-Recoverable Optical Storage Medium for Dynamic Anti-Counterfeiting with High Security. Laser Photonics Rev. 2023, 17, 2200734.
|
| [15] |
Wan J.; Xu J.; Zhu S.; Li J.; Chen K. Multicolor photochromic material with dual protection of anti-counterfeiting and waterproofing. Chem. Eng. J. 2023, 473, 145500.
|
| [16] |
Sun L.; Wang B.; Xing G.; Liang C.; Ma W.; Yang S. Bi-induced photochromism and photo-stimulated luminescence with fast photochromic response for multi-mode dynamic anti-counterfeiting and optical information storage. Chem. Eng. J. 2023, 455, 140752.
|
| [17] |
Hu L.; Gao Y.; Cai Q.; Wei Y.; Zhu J.; Wu W.; Yang Y. Cholesterol-substituted spiropyran: Photochromism, thermochromism, mechanochromism and its application in time-resolved information encryption. J. Colloid Interface Sci. 2024, 665, 545-553.
|
| [18] |
Wang L.; Zhong W.; Gao W.; Liu W.; Shang L. Dynamic multicolor luminescent anti-counterfeiting based on spiropyran-engineered gold nanoclusters. Chem. Eng. J. 2024, 479, 147490.
|
| [19] |
Song Y.; Zhao Y.; Huang Z.; Zhao J. Aqueous synthesis of molybdenum trioxide (h-MoO3, α-MoO3ꞏH2O and h-/α-MoO3 composites) and their photochromic properties study. J. Alloys Compd. 2017, 693, 1290-1296.
|
| [20] |
Wang W.; Ye Y.; Feng J.; Chi M.; Guo J.; Yin Y. Enhanced photoreversible color switching of redox dyes catalyzed by barium-doped TiO2 nanocrystals. Angew. Chem. Int. Ed. 2015, 54, 1321-1326.
|
| [21] |
Kozlov D.A.; Shcherbakov A.B.; Kozlova T.O.; Angelov B.; Kopitsa G.P.; Garshev A.V.; Baranchikov A.E.; Ivanova O.S.; Ivanov V.K. Photochromic and Photocatalytic Properties of Ultra-Small PVP-Stabilized WO3 Nanoparticles. Molecules 2019, 25, 154.
|
| [22] |
Yan X.; Zhong W.; Qu S.; Li Z.; Shang L. Photochromic Tungsten Oxide Quantum Dots-based Fluorescent Photoswitches towards Dual-mode Anti-counterfeiting Application. J. Colloid Interface Sci. 2023, 646, 855-862.
|
| [23] |
Wang F.; Song Y.; Xie R.; Li J.; Zhang X.; Xie H.; Zou H. TiO2/PVA Based Composites: Visible Light Activated Rapid Dual-Mode optical Response. Chem. Eng. J. 2023, 475, 146306.
|
| [24] |
Li L.; Yu Y.-T.; Zhang N.-N.; Li S.-H.; Zeng J.-G.; Hua Y.; Zhang H. Polyoxometalate (POM)-based crystalline hybrid photochromic materials. Coord. Chem. Rev. 2024, 500, 215526.
|
| [25] |
Zhang J.; Chen T.; Zhu M.; Lu J.; Liu X.; Sun W.; So M.Y.; Xu B. Scalable, Fast Light-Responsive, and Excellent Color-Retention Fiber-Based Photochromic Wearables for Sustainable Photo-Patterning and Information Security Encryption. Adv. Funct. Mater. 2024, 35, 2415622.
|
| [26] |
Pope T.R.; Lassig M.N.; Neher G.; Weimar Iii R.D.; Salguero T.T. Chromism of Bi2WO6 in single crystal and nanosheet forms. J. Mater. Chem. C 2014, 2, 3223-3230.
|
| [27] |
Kayani A.B.A.; Kuriakose S.; Monshipouri M.; Khalid F.A.; Walia S.; Sriram S.; Bhaskaran M. UV Photochromism in Transition Metal Oxides and Hybrid Materials. Small 2021, 17, e2100621.
|
| [28] |
Yang Y.; Li J.; Li X.; Guan L.; Gao Z.; Duan L.; Jia F.; Gao G. Easily Prepared and Reusable Films for Fast-Response Rewritable Light Printing. ACS Appl. Mater. Interfaces 2019, 11, 14322-14328.
|
| [29] |
Wu W.; Ni M.; Feng Q.; Zhou Y.; Cui Y.; Zhang Y.; Xu S.; Lin L.; Zhou M.; Li Z. A wet bacterial cellulose film self-anchored by phosphotungstic acid: Flexible, quick-response and stable cycling performance for photochromic application. Mater. Des. 2024, 238, 112613.
|
| [30] |
Hussain M.; Ahmad Z.; Ejeromedoghene O.; Shehzad K.; Akhtar M.; Fu G. Hybrid polysaccharide film infused with polyoxometalates for inkless printing and solar ultraviolet sensing. Int. J. Biol. Macromol. 2025, 293, 139308.
|
| [31] |
Zhang Y.; Gao Z.; Liu F.; Liu L.; Yan M.; Wang W. Electrostatic Assembly of Photochromic TiO2/Phosphomolybdic Acid Composite Nanoparticles for Light-Responsive Rewritable Papers. ACS Appl. Nano Mater. 2022, 5, 13218-13226.
|
| [32] |
Tian Y.; Liu W.; Hu J.; Li Z.; Xin X.; Fu G. Synthesis of highly transparent and fast-responding photochromic coating by template method with space-limited domains. Chem. Eng. J. 2024, 500, 156961.
|
| [33] |
Hutomo F.A.; Pramata A.D.; Saputra F.; Pratama P.R.; De Yonarosa T.G.; Rasyida A.; Widyastuti; Sutarsis; Hamidah N.L. Visible light-driven Synergetic antimicrobial activity of Cu2O quantum dots and electrospun PAN/PCL nanofiber matrix. J. Sci.:Adv. Mater. Devices 2024, 9, 100779.
|
| [34] |
Nazari S.; Asgari E.; Sheikhmohammadi A.; Mokhtari S.A.; Alamgholiloo H. Visible-light-driven photocatalytic activity of WO3/ZIF-67 S-scheme heterojunction for upgrading degradation of oxytetracycline. J. Environ. Chem. Eng. 2023, 11, 110393.
|
| [35] |
Jia L.; Ma N.; Shao P.; Ge Y.; Liu J.; Dong W.; Song H.; Lu C.; Zhou Y.; Xu X. Incorporating ReS2 Nanosheet into ZnIn2S4 Nanoflower as Synergistic Z-Scheme Photocatalyst for Highly Effective and Stable Visible-Light-Driven Photocatalytic Hydrogen Evolution and Degradation. Small 2024, 20, e2404622.
|
| [36] |
Zhang J.; Lei Y.; Jiang J.; Zhao S.; Yi H.; Tang X.; Huang X.; Zhou Y.; Gao F. ZnIn2S4/g-C3N4 binary heterojunction nanostructure for enhancing visible light CO2 reduction at the reaction interface. Renew. Energy 2025, 242, 122380.
|
| [37] |
Chen P.; Wang X.; Liu B.; Yan L.; Du X.; Zhang J.; Zhao J. Cu-doped KTN crystal with controllable, reversible, and fast photochromic properties: A superior electro-optical material for improving beam deflection performance. Ceram. Int. 2024, 50, 32645-32654.
|
| [38] |
Wang B.; Guo Y.; Li Q.; Xin C.; Tian Y.; Zhang W.; Yu X. Design of porous ZrO2 with well-tuned band structures and strong visible-light harvesting via Zn doping for enhanced visible-light photocatalysis. Chem. Eng. J. 2024, 481, 148489.
|
| [39] |
Zhang Y.; Dou Y.; Ye Z.; Xue W.; Liu F.; Yan M.; Wang W.; Yin Y. Visible-Light-Responsive Photoreversible Multi-Color Switching for Rewritable Light-Printing and Information Display. Small 2024, 20, e2310962.
|
| [40] |
Ma Y.; Li A.; Wang C.; Ge X. Preparation of HPW@UiO-66 catalyst with defects and its application in oxidative desulfurization. Chem. Eng. J. 2021, 404, 127062.
|
| [41] |
Sun A.; Nan F.; Wei Q.; Wang L.; Yu W.W. Color-tunable, multifunctional photochromic composites for wearable UV monitoring and biomechanical energy harvesting. Nano Energy 2024, 126, 109679.
|
| [42] |
Xiong T.; Yong W.; Chen N.; Fu G. Transparent insulating photochromic PU/PTA films for Wide-Spectrum modulated smart windows. J. Photochem. Photobiol. A 2024, 456, 115853.
|
| [43] |
Gu H.; Guo C.; Zhang S.; Bi L.; Li T.; Sun T.; Liu S. Highly Efficient, Near-Infrared and Visible Light Modulated Electrochromic Devices Based on Polyoxometalates and W18O49 Nanowires. ACS Nano 2018, 12, 559-567.
|
| [44] |
Chen L.; Chen W.L.; Wang X.L.; Li Y.G.; Su Z.M.; Wang E.B. Polyoxometalates in dye-sensitized solar cells. Chem. Soc. Rev. 2019, 48, 260-284.
|
| [45] |
Chen X.; Zhang G.; Li B.; Wu L. An integrated giant polyoxometalate complex for photothermally enhanced catalytic oxidation. Sci. Adv. 2021, 7, eabf8413.
|
| [46] |
Ganeshraja A.S.; Thirumurugan S.; Rajkumar K.; Zhu K.; Wang Y.; Anbalagan K.; Wang J. Effects of structural, optical and ferromagnetic states on the photocatalytic activities of Sn-TiO2 nanocrystals. RSC Adv. 2016, 6, 409-421.
|
| [47] |
Xiang H.; Luo T.; Ji Y.; Xiong T.; Qian L.; Yang S.; Wang H. Photocatalytic degradation of low-concentration gaseous benzene in air via bifunctional tin-doped titanium dioxide catalyst. Environ. Technol. Innov. 2024, 36, 103804.
|
| [48] |
Cui Y.; Xing Z.; Guo M.; Qiu Y.; Fang B.; Li Z.; Wang Y.; Chen P.; Zhou W. Core-shell carbon colloid sphere@phosphotungstic acid/CdS as a Z-scheme heterojunction with synergistic adsorption, photothermal and photocatalytic performance. Catal. Sci. Technol. 2021, 11, 6080-6088.
|
| [49] |
Cai S.; Wu H.; Gao X.; Chen X.; Cheng C.; Yang X.; Sun R. Phosphotungstic acid decorated free-standing electrode accelerates polysulfides conversion for high-performance flexible Li-S batteries. J. Energy Storage 2024, 89, 111663.
|
| [50] |
Li R.; Zhou Y.; Shao Z.; Zhao S.; Chang T.; Huang A.; Li N.; Ji S.; Jin P. Enhanced Coloration/Bleaching Photochromic Performance of WO3 Based on PVP/PU Composite Matrix. Chem. Select 2019, 4, 9817-9821.
|
| [51] |
Yang Z.; Wang D.; Zhang Y.; Feng Z.; Liu L.; Wang W. Photoreductive BiOCl ultrathin nanosheets for highly efficient photocatalytic color switching. ACS Appl. Mater. Interfaces 2020, 12, 8604-8613.
|
| [52] |
Gao Z.; Zhou Z.; Wang M.; Shang N.; Gao W.; Cheng X.; Gao S.; Gao Y.; Wang C. Highly dispersed Pd anchored on heteropolyacid modified ZrO2 for high efficient hydrodeoxygenation of lignin-derivatives. Fuel 2023, 334, 126768.
|
| [53] |
Boga B.; Székely I.; Pap Z.; Baia L.; Baia M. Detailed Spectroscopic and Structural Analysis of TiO2/WO3 Composite Semiconductors. J. Spectro. 2018, 2018, 6260458.
|
| [54] |
Khan H.; Rigamonti M.G.; Boffito D.C. Enhanced photocatalytic activity of Pt-TiO2/WO3 hybrid material with energy storage ability. Appl. Catal. B 2019, 252, 77-85.
|
| [55] |
Wei D.; Zhang Y.; Xue W.; Dou Y.; Liu F.; Yan M.; Wang W. Visible-Light-Responsive Photoreversible Color Switching of Oxygen-Deficient WO3-x Hierarchical Nanostructures for Long-Legible Rewritable Paper. ACS Sustain. Chem. Eng. 2024, 12, 6310-6319.
|
| [56] |
Hua C.; Doheny P.W.; Ding B.; Chan B.; Yu M.; Kepert C.J.; D’Alessandro D.M. Through-space intervalence charge transfer as a mechanism for charge delocalization in metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 6622-6630.
|
| [57] |
Ramírez-Wierzbicki I.; Cotic A.; Cadranel A. Photoinduced intervalence charge transfers: spectroscopic tools to study fundamental phenomena and applications. ChemPhysChem 2022, 23, e202200384.
|
| [58] |
Yang C.; Guo N.; Qu S.; Ma Q.; Liu J.; Chen S.; Ouyang R. Design of anti-thermal quenching Pr3+-doped niobate phosphors based on a charge transfer and intervalence charge transfer band excitation-driven strategy. Inorg. Chem. Front. 2023, 10, 4808-4818.
|
| [59] |
Kong L.; Jing Z.; Mamoor M.; Jiang Y.; Zhai Y.; Qu G.; Wang L.; Wang B.; Xu L. Enhancing the Reversibility and Kinetics of Heterovalent Ion-Substituted Mn-Based Prussian Blue Analogue Cathodes via Intervalence Charge Transfer. Angew. Chem. Int. Ed. 2025, e202500254.
|
| [60] |
Chang X.; Dong X.; Liu X.; Tong Y.; Li K.; Li Z.; Lu Y. Constructing a hexagonal/orthorhombic WO3 phase junction for enhanced photochromism. Opt. Mater. 2023, 142, 114131.
|
| [61] |
Wang Q.; Zhang W.; Hu X.; Xu L.; Chen G.; Li X. Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light. J. Water Process Eng. 2021, 40, 101943.
|
| [62] |
Zhao J.; Liu L.; Zhang Y.; Feng Z.; Zhao F.; Wang W. Light-responsive color switching of self-doped TiO2-x/WO3ꞏ0.33H2O hetero-nanoparticles for highly efficient rewritable paper. Nano Res. 2020, 14, 165-171.
|
| [63] |
Zhang Y.; Cheng C.; Zhou Z.; Long R.; Fang W.H. Surface Hydroxylation during Water Splitting Promotes the Photoactivity of BiVO4(010) Surface by Suppressing Polaron-Mediated Charge Recombination. J. Phys. Chem. Lett. 2023, 14, 9096-9102.
|
| [64] |
Deng H.; Qin C.; Pei K.; Wu G.; Wang M.; Ni H.; Ye P. TiO2/reduced hydroxylated graphene nanocomposite photocatalysts: Improved electron-hole separation and migration. Mater. Chem. Phys. 2021, 270, 124796.
|
| [65] |
Yang Y.; Chen Y.; Li Y.; Wang Z.; Zhao H. Acid-, mechano- and photochromic molecular switches based on a spiropyran derivative for rewritable papers. Mater. Chem. Front. 2022, 6, 916-923.
|
| [66] |
Zhang Y.; Wang Q., Acceleration photochromic performance in tungsten oxide. Opt. Mater. 2024, 157, 116365.
|
| [67] |
Zhu Y.; Li B.; Li C.; Tian S., Transparent photochromic Fe-doped W18O49 films with ultrahigh solar energy modulation for smart windows. J. Mater. Chem. C 2025, 13, 6115-6122.
|
| [68] |
Oderinde O.; Ejeromedoghene O.; Fu G., Synthesis and properties of low-cost, photochromic transparent hydrogel based on ethaline-assisted binary tungsten oxide‐molybdenum oxide nanocomposite for optical memory applications. Polym. Adv. Technol. 2022, 33, 687-699.
|
| [69] |
Liu T.; Li J. L.; Xie Z.; Huang C.; Wang J.; Zhang C.; Sha C.; Wang L., Naphthalene-embedded spiropyran derivative-A type of conjugated expanded material with solid-state photochromic properties and tunable color switching range. J. Mol. Struct. 2024, 1318, 139404.
|