Proof of Some Congruence Conjectures of Z.-H. Sun

Guoshuai Mao , Zhengkai Zhao

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (6) : 1285 -1304.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (6) :1285 -1304. DOI: 10.1007/s11464-024-0111-8
Research Article
research-article

Proof of Some Congruence Conjectures of Z.-H. Sun

Author information +
History +
PDF

Abstract

In this paper, we mainly prove some conjectural congruences of Z.-H. Sun involving Almkvist–Zudilin numbers

bn=k=0n3(2kk)(3kk)(n3k)(n+kk)(3)n3k.

Let p > 3 be a prime. If p ≡ 3 (mod 4), then

Keywords

Congruences / Apéry-like numbers / harmonic numbers / Legendre symbol / 11A07 / 11B65 / 11B68

Cite this article

Download citation ▾
Guoshuai Mao, Zhengkai Zhao. Proof of Some Congruence Conjectures of Z.-H. Sun. Frontiers of Mathematics, 2025, 20(6): 1285-1304 DOI:10.1007/s11464-024-0111-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Apéry R. Irrationalité de ζ(2) et ζ(3). Astérisque, 1979, 61: 11-13

[2]

Beukers F. Another congruences for the Apéry numbers. J. Number Theory, 1987, 25(2): 201-210

[3]

Chan H, Verrill H. The Apéry numbers, the Almkvist–Zudilin numbers and new series for 1/π. Math. Res. Lett., 2009, 16(3): 405-420

[4]

Chan H, Zudilin W. New representations for Apéry-like sequences. Mathematika, 2010, 56(1): 107-117

[5]

Cohen H. Number Theory, Volume II: Analytic and Modern Tools, 2007, New York, Springer

[6]

Liu J.-C., Ramanujan-type supercongruences involving Almkvist–Zudilin numbers. Results Math., 2022, 77 (2): Paper No. 67, 11 pp.

[7]

Liu J-C, Ni H-X. On two supercongruences involving Almkvist–Zudilin sequences. Czechoslovak Math. J., 2021, 71(1464): 1211-1219

[8]

Liu J-C, Wang C. Congruences for the (p − 1)th Apéry number. Bull. Aust. Math. Soc, 2019, 99(3): 362-368

[9]

Long L, Ramakrishna R. Some supercongruences occurring in truncated hypergeometric series. Adv. Math., 2016, 290: 773-808

[10]

Mao G-S. Proof of two conjectural supercongruences involving Catalan–Larcombe–French numbers. J. Number Thery, 2017, 179: 88-96

[11]

Mao G.-S., On two congruences involving Apéry and Franel numbers. Results Math., 2020, 75 (4): Paper No. 159, 12 pp.

[12]

Mao G-S, Li D. Proof of some conjectural congruences modulo p3. J. Difference Equ. Appl., 2022, 28(4): 496-509

[13]

Mao G-S, Li D, Ma X. On some congruences involving Apéry-like numbers Sn. J. Difference Equ. Appl., 2023, 29(2): 181-197

[14]

Mao G-S, Wang J. On some congruences involving Domb numbers and harmonic numbers. Int. J. Number Theory, 2019, 15(10): 2179-2200

[15]

Mao G-S, Zhaosong A-B. On three conjectural congruences of Z.-H. Sun involving Apéry and Apéry-like numbers. Monatsh. Math., 2023, 201(1): 197-216

[16]

Morley F. Note on the congruence 24n ≡ (−)n(2n)!/(n!)2, where 2n + 1 is a prime. Ann. Math., 1894, 9: 168-170 1895

[17]

Ram Murty M. Introduction to p-adic Analytic Number Theory, 2002, Somerville, MA, International Press

[18]

Robert A. A Course in p-adic Analysis, 2000, New York, Springer-Verlag

[19]

Schneider C., Symbolic summation assists combinatorics. Sém. Lothar. Combin., 2006/2007, 56: Art. B56b, 36 pp.

[20]

Sun Z-H. Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl. Math., 2000, 105(1–3): 193-223

[21]

Sun Z-H. Congruences for Domb and Almkvist–Zudilin numbers. Integral Transforms Spec. Funct., 2015, 26(8): 642-659

[22]

Sun Z-H. Supercongruences involving Bernoulli polynomials. Int. J. Number Theory, 2016, 12(5): 1259-1271

[23]

Sun Z-H. Super congruences for two Apéry-like sequences. J. Difference Equ. Appl., 2018, 24(10): 1685-1713

[24]

Sun Z-H. Congruences involving binomial coefficients and Apéry-like numbers. Publ. Math. Debrecen, 2020, 96(3–4): 315-346

[25]

Sun Z.-H., Super congruences concerning binomial coefficients and Apéry-like numbers. 2020, arXiv:2002.12072v1

[26]

Sun Z.-H., New congruences involving Apéry-like numbers. 2020, arXiv:2004.07172v2

[27]

Sun Z-H. Supercongruences and binary quadratic forms. Acta Arith., 2021, 199(1): 1-32

[28]

Sun Z-H. Supercongruences involving Apéry-like numbers and binomial coefficients. AIMS Math., 2022, 7(2): 2729-2781

[29]

Sun Z-H. Congruences for certain families of Apéry-like sequences. Czechoslovak Math. J., 2022, 72(3): 875-912

[30]

Zagier D. Integral solutions of Apéry-like recurrence equations. Groups and Symmetries, 2009, Providence, RI, Amer. Math. Soc.349366

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

241

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/