Dynkin Indices, Casimir Elements and Branching Rules

Yongzhi Luan

Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (3) : 617 -668.

PDF
Frontiers of Mathematics ›› 2025, Vol. 20 ›› Issue (3) : 617 -668. DOI: 10.1007/s11464-022-0038-x
Research Article

Dynkin Indices, Casimir Elements and Branching Rules

Author information +
History +
PDF

Abstract

The Dynkin index is introduced by E. B. Dynkin in his famous work on the classification of semisimple subalgebras of semisimple Lie algebras in 1952. Dynkin index offers a way to study the different embeddings of a simple subalgebra into a complex simple Lie algebra, and the Dynkin index is also used in the Wess–Zumino–Witten (WZW) model of the conformal field theory. In this paper, we work on the Dynkin indices of representations of

ADE
-type complex simple Lie algebras, as well as some non-
ADE
-type Lie algebras. As an application of computational Lie theory, we work on the branching rules from the complex simple exceptional Lie algebras to
sl(3,C)
and
g2
. As a result, we get the Dynkin indices of
sl(3,C)
and
g2
in the exceptional Lie algebras. In this process, we find a new Dynkin index of
g2
in
e8
, i.e., 4. This number is not listed in Dynkin’s paper of 1952.

Keywords

Nilpotent orbit / Dynkin index / representation

Cite this article

Download citation ▾
Yongzhi Luan. Dynkin Indices, Casimir Elements and Branching Rules. Frontiers of Mathematics, 2025, 20(3): 617-668 DOI:10.1007/s11464-022-0038-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BourbakiNGroupes et Algèbres de Lie, 2007, Heidelberg, Springer BerlinChapitres 4, 5 et 6

[2]

BourbakiNLie Groups and Lie Algebras, 2002, Berlin, Springer-Verlag Chapters 4–6

[3]

CollingwoodDH, McGovernWMNilpotent Orbits in Semisimple Lie Algebras, 1993, New York, Van Nostrand Reinhold Co.

[4]

Di FrancescoP, MathieuP, SenechalDConformal Field Theory, 1997, New York, Springer-Verlag

[5]

DynkinEB. Semisimple subalgebras of semisimple Lie algebras. Mat. Sbornik N.S., 1952, 30(72): 349-462(3 plates)

[6]

DynkinEB. Semisimple subalgebras of semisimple Lie algebras. Five Papers on Algebra and Group Theory, 1957, Providence, RI, American Mathematical Society: 111-2446

[7]

FegerR, KephartTW. LieART—a Mathematica application for Lie algebras and representation theory. Comput. Phys. Commun., 2015, 192: 166-195

[8]

Feger R., Kephart T.W., Saskowsk R.J., LieART 2.0—a Mathematica application for Lie algebras and representation theory. Comput. Phys. Commun., 2020, 257: Paper No. 107490, 24 pp.

[9]

GreubW, HalperinS, VanstoneRConnections, Curvature, and Cohomology, Vol. II: Lie Groups, Principal Bundles, and Characteristic Classes, 1973, New York-London, Academic Press47-II

[10]

HallBLie Groups, Lie Algebras, and Representations—An Elementary Introduction, 2015SecondCham, Springer 222

[11]

KirillovA JrAn Introduction to Lie Groups and Lie Algebras, 2008, Cambridge, Cambridge University Press 113

[12]

KnappAWLie Groups Beyond an Introduction, 2002SecondBoston, MA, Birkhäuser Boston, Inc.140

[13]

LuanYNilpotent orbits and Dynkin indices of Lie algebras, 2021, Hong Kong, Hong Kong University of Science and Technology

[14]

PanyushevDI. On the Dynkin index of a principal sl2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathfrak s}{\mathfrak l}_{2}$$\end{document}-subalgebra. Adv. Math., 2009, 221(4): 1115-1121

[15]

PanyushevDI. The Dynkin index and sl2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathfrak s}{\mathfrak l}_{2}$$\end{document}-subalgebras of simple Lie algebras. J. Algebra, 2015, 430: 15-25

[16]

SageMath licensed under the GPL, SageMath. https://www.sagemath.org/index.html, version SageMath 9.2 released on 24 October 2020

[17]

SageMath PREP Tutorials v9.2, Maximal subgroups and branching rules. https://doc.sagemath.org/html/en/thematic_tutorials/lie/branching_rules.html, 2021

[18]

SageMath PREP Tutorials v9.2, The Weyl character ring. https://doc.sagemath.org/html/en/thematic_tutorials/lie/weyl_character_ring.html, 2021

[19]

SlodowyPSimple Singularities and Simple Algebraic Groups, 1980, Berlin, Springer815

RIGHTS & PERMISSIONS

Peking University

AI Summary AI Mindmap
PDF

260

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/