Room-Temperature Sputtered Cerium-Doped Indium Oxide Transparent Conducting Electrodes for Bifacial Perovskite Solar Cells: Albedo Utilization and Perovskite/Silicon Tandems

Ryan Hill Smith Zachary , Li Ming-Hsien , Lin Chen-Fu , Yousuf Farhan , Chang Keh-Chin , Chen Peter

Materials and Sustainability ›› 2025, Vol. 1 ›› Issue (2) : 10

PDF (2109KB)
Materials and Sustainability ›› 2025, Vol. 1 ›› Issue (2) :10 DOI: 10.53941/matsus.2025.100010
Article
research-article

Room-Temperature Sputtered Cerium-Doped Indium Oxide Transparent Conducting Electrodes for Bifacial Perovskite Solar Cells: Albedo Utilization and Perovskite/Silicon Tandems

Author information +
History +
PDF (2109KB)

Abstract

Bifacial perovskite solar cells (PSCs) offer the potential for higher power output through tandem configurations with silicon solar cells or by harvesting light from both sides. A high-transmittance and low-resistance transparent electrode is crucial for bifacial PSCs. However, the most widely used transparent conductive oxide (TCO) as transparent electrodes often require energetic ion bombardment during deposition and high post-annealing temperatures to obtain high transmittance and low resistance, making them incompatible for direct deposition onto delicate perovskite films. In this work, a cerium-doped indium oxide (ICO) film, prepared via radio frequency (RF) magnetron sputtering at room temperature (RT), is employed as the top transparent conductive electrode in bifacial PSCs. A 20 nm MoOx layer is introduced as a buffer layer to protect the underlying spiro-OMeTAD and perovskite layers against sputtering damage. The ICO film, deposited with an RF power of 80 W for 1 h and 20 min at RT, exhibits an amorphous structure with a thickness of 210 nm, a mobility of 8.3 cm2/Vs, a carrier concentration of 6.07 × 1020 cm−3, a resistivity of 1.24 × 10−3 Ω·cm, and an average transmittance of 89.70% between 550 nm and 1000 nm, resulting in a figure of merit (FOM) of 6.67 × 10−3 Ω−1. The fabricated bifacial PSC demonstrates power conversion efficiencies (PCEs) of 15.28% and 10.00% when illuminated from the FTO side and ICO side, respectively. Furthermore, the bifacial PSC under simultaneous illumination from both sides achieves a superior power density compared to the monofacial PSC in albedo utilization. Finally, by mechanically stacking the bifacial PSC as the top cell with a passivated emitter rear contact (PERC) crystalline silicon solar cell as the bottom cell, the 4-terminal perovskite/silicon tandem solar cell achieves a PCE of 21.89%.

Keywords

cerium-doped indium oxide / transparent conducting oxide / magnetron sputtering / perovskite solar cells / bifacial solar cells / 4-terminal tandem solar cells

Cite this article

Download citation ▾
Ryan Hill Smith Zachary, Li Ming-Hsien, Lin Chen-Fu, Yousuf Farhan, Chang Keh-Chin, Chen Peter. Room-Temperature Sputtered Cerium-Doped Indium Oxide Transparent Conducting Electrodes for Bifacial Perovskite Solar Cells: Albedo Utilization and Perovskite/Silicon Tandems. Materials and Sustainability, 2025, 1(2): 10 DOI:10.53941/matsus.2025.100010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Afroz M.; Ratnesh R.K.; Srivastava S.; et al. Perovskite solar cells: Progress, challenges, and future avenues to clean energy. Sol. Energy 2025, 287, 113205. https://doi.org/10.1016/j.solener.2024.113205.

[2]

Mei J.; Yan F. Recent Advances in Wide-Bandgap Perovskite Solar Cells. Adv. Mater. 2025, 2418622. https://doi.org/10.1002/adma.202418622.

[3]

Tang G.; Chen L.; Cao X.; et al. A Review on Recent Advances in Flexible Perovskite Solar Cells. Sol. RRL 2025, 9,2400844. https://doi.org/10.1002/solr.202400844.

[4]

Wallach T.; Etgar L. Highly transparent and semi-transparent perovskites and their applications. Appl. Phys. Rev. 2025, 12, 011314. https://doi.org/10.1063/5.0237977.

[5]

Liu Y.; Ma Z.; Zhang J.; et al. Light-Emitting Diodes Based on Metal Halide Perovskite and Perovskite Related Nanocrystals. Adv. Mater. 2025, 2415606. https://doi.org/10.1002/adma.202415606.

[6]

Li X.; Aftab S.; Mukhtar M.; et al. Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions. Nano Micro Lett. 2024, 17, 28. https://doi.org/10.1007/s40820-024-01501-6.

[7]

Li F. Halide perovskites, a game changer for future medical imaging technology. Biophys. Rev. 2025, 6, 011302. https://doi.org/10.1063/5.0217068.

[8]

Yao F.; Dong K.; Ke W.; et al. Micro/Nano Perovskite Materials for Advanced X-ray Detection and Imaging. ACS Nano 2024, 18, 6095-6110. https://doi.org/10.1021/acsnano.3c10116.

[9]

Feng Z.; Wang J.; Chen F.; et al. Coupling Light into Memristors: Advances in Halide Perovskite Resistive Switching and Neuromorphic Computing. Small Methods 2025, 2500089. https://doi.org/10.1002/smtd.202500089.

[10]

Bagade S.S.; Patel P.K. A comprehensive review on potential of diffusion length enhancement to upraise perovskite solar cell performance. Phys. Scr. 2024, 99, 052003. https://doi.org/10.1088/1402-4896/ad3a26.

[11]

Zhang M.; Wu C.; Yin M.; et al. High Efficiency Tin Halide Perovskite Solar Cells with over 1 Micrometer Carrier Diffusion Length. Adv. Funct. Mater. 2024, 34, 2410772. https://doi.org/10.1002/adfm.202410772.

[12]

Miah M.H.; Khandaker M.U.; Rahman M.B.; et al. Band gap tuning of perovskite solar cells for enhancing the efficiency and stability: Issues and prospects. RSC Adv. 2024, 14, 15876-15906. https://doi.org/10.1039/D4RA01640H.

[13]

Novikov S.A.; Valueva A.D.; Klepov V.V. Band gap engineering and photoluminescence tuning in halide double perovskites. Dalton Trans. 2024, 53, 12442-12449. https://doi.org/10.1039/D4DT01420K.

[14]

Li X.; Aftab S.; Hussain S.; et al. Dimensional diversity (0D, 1D, 2D, and 3D) in perovskite solar cells: Exploring the potential of mixed-dimensional integrations. J. Mater. Chem. A 2024, 12, 4421-4440. https://doi.org/10.1039/D3TA06953B.

[15]

Zhang Q.; Zhang D.; Cao B.; et al. Improving the Operational Lifetime of Metal-Halide Perovskite Light-Emitting Diodes with Dimension Control and Ligand Engineering. ACS Nano 2024, 18, 8557-8570. https://doi.org/10.1021/acsnano.3c13136.

[16]

Muhammad Z.; Rashid A. Exciton binding energies and polaron interplay in the optically excited state of organic-inorganic lead halide perovskites. Mater. Adv. 2025, 6, 13-38. https://doi.org/10.1039/D4MA00454J.

[17]

Liu G.; Ghasemi M.; Wei Q.; et al. Dynamic Defect Tolerance in Metal Halide Perovskites: From Phenomena to Mechanism. Adv. Energy Mater. 2025, 15, 2405239. https://doi.org/10.1002/aenm.202405239.

[18]

Available online: https://www2.nrel.gov/pv/cell-efficiency (accessed on 18 May 2025).

[19]

Yang X.; Zhu Y.; Yan S.; et al. Blade-Coating Perovskites for Tandem Devices: Liquid Mechanism, Film Formation and Performance. Sol. RRL 2025, 9, 202500149. https://doi.org/10.1002/solr.202500149.

[20]

Wang H.; Lin W.; Wang Y.; et al. Perovskite/silicon tandem solar cells: A comprehensive review of recent strategies and progress. Semicond. Sci. Technol. 2025, 40, 023001. https://doi.org/10.1088/1361-6641/adab11.

[21]

Adnan M.; Irshad Z.; Lim J. Impact of structural advancements interface engineering operational stability and commercial viability of perovskite/silicon tandem solar cells. Sol. Energy 2025, 286, 113190. https://doi.org/10.1016/j.solener.2024.113190.

[22]

Guo H.; Hou F.; Ren X.; et al. Recent Progresses on Transparent Electrodes and Active Layers Toward Neutral, Color Semitransparent Perovskite Solar Cells. Sol. RRL 2023, 7, 2300333. https://doi.org/10.1002/solr.202300333.

[23]

Hou F.; Ren X.; Guo H.; et al. Monolithic perovskite/silicon tandem solar cells: A review of the present status and solutions toward commercial application. Nano Energy 2024, 124, 109476. https://doi.org/10.1016/j.nanoen.2024.109476.

[24]

Kumar P.; Shankar G.; Pradhan B. Recent progress in bifacial perovskite solar cells. Appl. Phys. A 2022, 129, 63. https://doi.org/10.1007/s00339-022-06337-8.

[25]

Jung H.; Kim G.; Jang G.S.; et al. Transparent Electrodes with Enhanced Infrared Transmittance for Semitransparent and Four-Terminal Tandem Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 30497-30503. https://doi.org/10.1021/acsami.1c02824.

[26]

Feng Y.; Kim P.; Nemitz C.A.; et al. Boosting charge collection efficiency via large-area free-standing Ag/ZnO coreshell nanowire array electrodes. Prog. Nat. Sci. Mater. Int. 2019, 29, 124-128. https://doi.org/10.1016/j.pnsc.2019.03.002.

[27]

Chavan G.T.; Kim Y.; Khokhar M.Q.; et al. A Brief Review of Transparent Conducting Oxides (TCO): The Influence of Different Deposition Techniques on the Efficiency of Solar Cells. Nanomaterials 2023, 13, 1226.

[28]

Príncipe J.; Duarte V.C.M.; Mendes A.; et al. Influence of the Transparent Conductive Oxide Type on the Performance of Inverted Perovskite Solar Cells. ACS Appl. Energy Mater. 2023, 6, 12442-12451. https://doi.org/10.1021/acsaem.3c02292.

[29]

Chen Y.-J.; Li M.-H.; Huang J.-C.-A.; et al. The Cu/Cu2O nanocomposite as a p-type transparent-conductive-oxide for efficient bifacial-illuminated perovskite solar cells. J. Mater. Chem. C 2018, 6, 6280-6286. https://doi.org/10.1039/C8TC00768C.

[30]

Chiang Y.-H.; Peng C.-C.; Chen Y.-H.; et al. The utilization of IZO transparent conductive oxide for tandem and substrate type perovskite solar cells. J. Phys. D Appl. Phys. 2018, 51, 424002. https://doi.org/10.1088/1361-6463/aad71c.

[31]

Li P.; Li F.; Ma J.; et al. Over 500 °C stable transparent conductive oxide for optoelectronics. InfoMat 2024, 6, e12607. https://doi.org/10.1002/inf2.12607.

[32]

Abe Y.; Nishimura T.; Yamada A. Optimum Electrical and Optical Properties of Transparent Conducting Oxide for Cu(In,Ga)Se2 Photovoltaic Module Applications. Phys. Status Solidi 2024, 221, 2300641. https://doi.org/10.1002/pssa.202300641.

[33]

Yang Q.; Duan W.; Eberst A.; et al. Origin of sputter damage during transparent conductive oxide deposition for semitransparent perovskite solar cells. J. Mater. Chem. A 2024, 12, 14816-14827. https://doi.org/10.1039/D3TA06654A.

[34]

Özkol E.; Magalhães M.M.R.; Zhao Y.; et al. Optimization and integration of room temperature RF sputtered ICO as TCO layers in high-performance SHJ solar cells. Sol. Energy Mater. Sol. Cells 2025, 288, 113637. https://doi.org/10.1016/j.solmat.2025.113637.

[35]

Zhang L.; Che Z.; Shang J.; et al. Cerium-Doped Indium Oxide as a Top Electrode of Semitransparent Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 10838-10846. https://doi.org/10.1021/acsami.2c22942.

[36]

An S.; Chen P.; Hou F.; et al. Cerium-doped indium oxide transparent electrode for semi-transparent perovskite and perovskite/silicon tandem solar cells. Sol. Energy 2020, 196, 409-418. https://doi.org/10.1016/j.solener.2019.12.040.

[37]

Lee P.-H.; Wu T.-T.; Li C.-F.; et al. Featuring Semitransparent p-i-n Perovskite Solar Cells for High-Efficiency Four-Terminal/Silicon Tandem Solar Cells. Sol. RRL 2022, 6, 2100891. https://doi.org/10.1002/solr.202100891.

[38]

Zhang Y.; Gan Y.; Gan T.; et al. High mobility cerium-doped indium oxide thin films prepared by reactive plasma deposition without oxygen. Vacuum 2022, 206, 111512. https://doi.org/10.1016/j.vacuum.2022.111512.

[39]

Wan S.; Man X.; Zhang P.; et al. Ultra-Transparent Cerium-Doped Indium Oxide Films Deposited with Industry-Scale Reactive Plasma Deposition. J. Electron. Mater. 2024, 53, 4829-4840. https://doi.org/10.1007/s11664-024-11198-3.

[40]

Tumen-Ulzii G.; Qin C.; Matsushima T.; et al. Understanding the Degradation of Spiro‐OMeTAD‐Based Perovskite Solar Cells at High Temperature. Solar RRL 2020, 4, 2000305. https://doi.org/10.1002/solr.202000305.

[41]

Magliano E.; Mariani P.; Agresti A.; et al. Semitransparent Perovskite Solar Cells with Ultrathin Protective Buffer Layers. ACS Appl. Energy Mater. 2023, 6, 10340-10353. https://doi.org/10.1021/acsaem.3c00735.

[42]

Mujahid M.; Chen C.; Zhang J.; et al. Recent advances in semitransparent perovskite solar cells. InfoMat 2021, 3, 101-124. https://doi.org/10.1002/inf2.12154.

[43]

Lou J.; Feng J.; Cao Y.; et al. Designed multi-layer buffer for high-performance semitransparent wide-bandgap perovskite solar cells. Mater. Adv. 2023, 4, 1777-1784. https://doi.org/10.1039/D2MA01089E.

[44]

Liang F.; Ying Z.; Lin Y.; et al. High-Performance Semitransparent and Bifacial Perovskite Solar Cells with MoOx/Ag/WOx as the Rear Transparent Electrode. Adv. Mater. Interfaces 2020, 7, 2000591. https://doi.org/10.1002/admi.202000591.

[45]

Shi H.; Zhang L.; Huang H.; et al. Simultaneous Interfacial Modification and Defect Passivation for Wide-Bandgap Semitransparent Perovskite Solar Cells with 14.4% Power Conversion Efficiency and 38% Average Visible Transmittance. Small 2022, 18, 2202144. https://doi.org/10.1002/smll.202202144.

[46]

Sahli F.; Werner J.; Kamino B.A.; et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 2018, 17, 820-826. https://doi.org/10.1038/s41563-018-0115-4.

[47]

Werner J.; Weng C.-H.; Walter A.; et al. Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area > 1 cm2. J. Phys. Chem. Lett. 2016, 7, 161-166. https://doi.org/10.1021/acs.jpclett.5b02686.

[48]

Hörantner M.T.; Snaith H.J. Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci. 2017, 10, 1983-1993. https://doi.org/10.1039/C7EE01232B.

[49]

Huang Y.-C.; Huang S.-W.; Li C.-F.; et al. A comprehensive optimization of highly efficient MA-Free wide-bandgap perovskites for 4-T Perovskite/Silicon tandem solar cells. Chem. Eng. J. 2025, 503, 158272. https://doi.org/10.1016/j.cej.2024.158272.

PDF (2109KB)

539

Accesses

0

Citation

Detail

Sections
Recommended

/