Enhancing tumor radiotherapy sensitivity through metal nanomaterials: A comprehensive review

Susu Xiao , Xiaoxiao Wang , Bo Chen , Min Mu , Bo Han , Nianyong Chen , Gang Guo

Malignancy Spectrum ›› 2024, Vol. 1 ›› Issue (4) : 243 -262.

PDF (1890KB)
Malignancy Spectrum ›› 2024, Vol. 1 ›› Issue (4) : 243 -262. DOI: 10.1002/msp2.52
REVIEW

Enhancing tumor radiotherapy sensitivity through metal nanomaterials: A comprehensive review

Author information +
History +
PDF (1890KB)

Abstract

Radiotherapy (RT) plays a crucial role in tumor treatment and is an indispensable therapeutic approach. However, ionizing radiation often damages the normal tissues surrounding the tumor. Therefore, there is an urgent need for effective methods to improve the precision of RT. Nanotechnology has shown potential in enhancing the efficacy and safety of tumor RT. With the continuous development of multifunctional nanomaterials, various nanomaterials have been designed and investigated as radiation enhancers. Metallic nanomaterials are considered as promising radiosensitizers with potential for clinical translation. High atomic number (high-Z) metal nanoparticles (NPs), such as gold and bismuth, have garnered increasing attention for their ability to enhance the radiation effect, as they can potentially improve RT outcomes. New nanomedicine strategies may help to advance RT. This paper concisely explains the radiation enhancement mechanisms of high-Z metal NPs. It also enumerates several commonly studied high-Z metallic nanomaterials used in tumor RT and discusses their potential clinical applications.

Keywords

radiotherapy / nanomaterials / radiosensitization / high-Z metal / tumor

Cite this article

Download citation ▾
Susu Xiao, Xiaoxiao Wang, Bo Chen, Min Mu, Bo Han, Nianyong Chen, Gang Guo. Enhancing tumor radiotherapy sensitivity through metal nanomaterials: A comprehensive review. Malignancy Spectrum, 2024, 1(4): 243-262 DOI:10.1002/msp2.52

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zou Y, Zhao Z, Song Y. An overview of multiomics: a powerful tool applied in cancer molecular subtyping for cancer therapy. Malig Spect. 2024;1(1):15-29.

[2]

Petroni G, Cantley LC, Santambrogio L, Formenti SC, Galluzzi L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol. 2022;19(2):114-131.

[3]

Chandra RA, Keane FK, Voncken FEM, Thomas CR Jr. Contemporary radiotherapy: present and future. Lancet. 2021;398(10295):171-184.

[4]

Patel N. The plasma revolution. Nature. 2007;449(7159):133-135.

[5]

Ma X, Yao M, Gao Y. Functional immune cell-derived exosomes engineered for the trilogy of radiotherapy sensitization. Adv Sci. 2022;9(23):e2106031.

[6]

Huang Z, Wang Y, Yao D, Wu J, Hu Y, Yuan A. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat Commun. 2021;12(1):145.

[7]

Yang Z, Luo Y, Yu H, et al. Reshaping the tumor immune microenvironment based on a light-activated nanoplatform for efficient cancer therapy. Adv Mater. 2021;34(11):e2108908.

[8]

Liu X, Li Y, Wang K, et al. GSH-responsive nanoprodrug to inhibit glycolysis and alleviate immunosuppression for cancer therapy. Nano Lett. 2021;21(18):7862-7869.

[9]

Bonvalot S, Le Pechoux C, De Baere T, et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin Cancer Res. 2017;23(4):908-917.

[10]

Imai R, Kamada T, Araki N, et al. Carbon ion radiation therapy for unresectable sacral chordoma: an analysis of 188 cases. Int J Radiat Oncol Biol Phys. 2016;95(1):322-327.

[11]

Hall S, Rudrawar S, Zunk M, et al. Protection against radiotherapy-induced toxicity. Antioxidants. 2016;5(3):22.

[12]

Kusumoto T, Ogawara R, Igawa K, et al. Scaling parameter of the lethal effect of mammalian cells based on radiation induced OH radicals: effectiveness of direct action in radiation therapy. J Radiat Res. 2021;62(1):86-93.

[13]

Liew H, Mein S, Debus J, Dokic I, Mairani A. Modeling direct and indirect action on cell survival after photon irradiation under normoxia and hypoxia. Int J Mol Sci. 2020;21(10):3471.

[14]

Borek C. Antioxidants and radiation therapy. J Nutr. 2004;134(11):3207S-3209S.

[15]

Wang H, Mu X, He H, Zhang XD. Cancer radiosensitizers. Trends Pharmacol Sci. 2018;39(1):24-48.

[16]

Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med. 2004;350(19):1937-1944.

[17]

Forastiere AA, Goepfert H, Maor M, et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med. 2003;349(22):2091-2098.

[18]

Chang Y, He L, Li Z, et al. Designing core-shell gold and selenium nanocomposites for cancer radiochemotherapy. ACS Nano. 2017;11(5):4848-4858.

[19]

Wang S, Li X, Chen Y, et al. A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy. Adv Mater. 2015;27(17):2775-2782.

[20]

Zhang L, Chen H, Wang L, et al. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnol Sci Appl. 2010;3:159-170.

[21]

Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol. 2008;60(8):977-985.

[22]

Benderitter M, Caviggioli F, Chapel A, et al. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid Redox Signal. 2014;21(2):338-355.

[23]

Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437-447.

[24]

Liu J, Bu W, Shi J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem Rev. 2017;117(9):6160-6224.

[25]

Haume K, Rosa S, Grellet S, et al. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. 2016;7(1):8.

[26]

Liauw SL, Connell PP, Weichselbaum RR. New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci Transl Med. 2013;5(173):173sr2.

[27]

Chen Z, Wang X, Zhao N, Chen H, Guo G. Advancements in pH-responsive nanocarriers: enhancing drug delivery for tumor therapy. Expert Opin Drug Deliv. 2023;20(11):1623-1642.

[28]

Chuan D, Fan R, Chen B, et al. Lipid-polymer hybrid nanoparticles with both PD-L1 knockdown and mild photothermal effect for tumor photothermal immunotherapy. ACS Appl Mater Interfaces. 2023;15(36):42209-42226.

[29]

Fan R, Chen C, Hou H, et al. Tumor acidity and near-infrared light responsive dual drug delivery polydopamine-based nanoparticles for chemo-photothermal therapy. Adv Funct Mater. 2021;31:2009733.

[30]

Paunesku T, Gutiontov S, Brown K, Woloschak GE. Radio-sensitization and nanoparticles. Cancer Treat Res. 2015;166:151-171.

[31]

Song G, Cheng L, Chao Y, et al. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv Mater. 2018;29(32):1700996.

[32]

Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv Mater. 2019;31(3):e1802244.

[33]

Kreipl MS, Friedland W, Paretzke HG. Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation. Radiat Environ Biophys. 2009;48(1):11-20.

[34]

Gaikwad HK, Tsvirkun D, Ben-Nun Y, Merquiol E, Popovtzer R, Blum G. Molecular imaging of cancer using X-ray computed tomography with protease targeted iodinated activity-based probes. Nano Lett. 2018;18(3):1582-1591.

[35]

Tsvirkun D, Ben-Nun Y, Merquiol E, et al. CT imaging of enzymatic activity in cancer using covalent probes reveal a size-dependent pattern. J Am Chem Soc. 2018;140(38):12010-12020.

[36]

Chen B, He Y, Bai L, et al. Radiation-activated PD-L1 aptamer-functionalized nanoradiosensitizer to potentiate anti-tumor immunity in combined radioimmunotherapy and photothermal therapy. J Mater Chem B. 2024;12(47):12220-12231.

[37]

Hu X, Gao X. Multilayer coating of gold nanorods for combined stability and biocompatibility. Phys Chem Chem Phys. 2011;13(21):10028-10035.

[38]

Pottier A, Borghi E, Levy L. Metals as radio-enhancers in oncology: the industry perspective. Biochem Biophys Res Commun. 2015;468(3):471-475.

[39]

Goswami N, Luo Z, Yuan X, Leong DT, Xie J. Engineering gold-based radiosensitizers for cancer radiotherapy. Mater Horiz. 2017;4(5):817-831.

[40]

Hossain M, Su M. Nanoparticle location and material dependent dose enhancement in X-ray radiation therapy. J Phys Chem C Nanomater Interfaces. 2012;116(43):23047-23052.

[41]

Gong L, Xie J, Zhu S, Gu Z, Zhao Y. Application of multi-functional nanomaterials in tumor radiosensitization. Acta Phys Chim Sin. 2018;2:34-61.

[42]

Zhang XD, Luo Z, Chen J, et al. Ultrasmall Au10–12(SG)10–12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv Mater. 2014;48(1):11-20.

[43]

Ma N, Jiang YW, Zhang X, et al. Enhanced radiosensitization of gold nanospikes via hyperthermia in combined cancer radiation and photothermal therapy. ACS Appl Mater Interfaces. 2016;8(42):28480-28494.

[44]

Bulin AL, Truillet C, Chouikrat R, et al. X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins. J Phys Chem C. 2013;117(41):21583-21589.

[45]

Guo Z, Zhu S, Yong Y, et al. Synthesis of BSA-coated BiOI@Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Adv Mater. 2017;29(44):170436.

[46]

Kamkaew A, Chen F, Zhan Y, Majewski RL, Cai W. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano. 2016;10(4):3918-3935.

[47]

Zhang C, Zhao K, Bu W, et al. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew Chem Int Ed. 2014;54(6):1770-1774.

[48]

Song G, Liang C, Yi X, et al. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv Mater. 2016;28(14):2716-2723.

[49]

Brun E, Sicard-Roselli C. Actual questions raised by nanoparticle radiosensitization. Radiat Phys Chem. 2016;128:134-142.

[50]

Su XY, Liu PD, Wu H, Gu N. Enhancement of radio-sensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol Med. 2014;11(2):86-91.

[51]

Rancoule C, Magné N, Vallard A, et al. Nanoparticles in radiation oncology: from bench-side to bedside. Cancer Lett. 2016;375(2):256-262.

[52]

Gerken LRH, Gerdes ME, Pruschy M, Herrmann IK. Prospects of nanoparticle-based radioenhancement for radiotherapy. Mater Horiz. 2023;10(10):4059-4082.

[53]

Schuemann J, Berbeco R, Chithrani DB, et al. Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int J Radiat Oncol Biol Phys. 2016;94(1):189-205.

[54]

Bo S, Huang R, Lang J. Characteristics and directions of modern radiation therapy physical technology. Sichuan Med J. 2005;26(2):230-232.

[55]

Butterworth KT, McMahon SJ, Currell FJ, Prise KM. Physical basis and biological mechanisms of gold nanoparticle radio-sensitization. Nanoscale. 2012;4(16):4830-4838.

[56]

Cunningham C, de Kock M, Engelbrecht M, Miles X, Slabbert J, Vandevoorde C. Radiosensitization effect of gold nanoparticles in proton therapy. Front Public Health. 2021;9:699822.

[57]

Park SH, Kang JO. Basics of particle therapy I: physics. Radiat Oncol J. 2011;29(3):135-146.

[58]

Kim JK, Seo SJ, Kim KH, et al. Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect. Nanotechnology. 2010;21(42):425102.

[59]

Kim JK, Seo SJ, Kim HT, et al. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys Med Biol. 2012;57(24):8309-8323.

[60]

Xie WZ, Friedland W, Li WB, et al. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by X-rays. Phys Med Biol. 2015;60(16):6195-6212.

[61]

Smith CL, Ackerly T, Best SP, et al. Determination of dose enhancement caused by gold-nanoparticles irradiated with proton, X-rays (kV and MV) and electron beams, using alanine/EPR dosimeters. Radiat Meas. 2015;82:122-128.

[62]

Schuemann J, Bagley AF, Berbeco R, et al. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol. 2020;65(21):21RM02.

[63]

Butterworth KT, Mcmahon SJ, Taggart LE, Prise KM. Radio-sensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl Cancer Res. 2013;2(4):269-279.

[64]

Stewart C, Konstantinov K, Mckinnon S, et al. First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Phys Med. 2016;32(11):1444-1452.

[65]

Wolfe T, Chatterjee D, Lee J, et al. Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo. Nanomedicine. 2015;11(5):1277-1283.

[66]

Howard D, Sebastian S, Le QV, Thierry B, Kempson I. Chemical mechanisms of nanoparticle radiosensitization and radioprotection: a review of structure-function relationships influencing reactive oxygen species. Int J Mol Sci. 2020;21(2):579.

[67]

Gerken LRH, Gogos A, Starsich FHL, et al. Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy. Nat Commun. 2022;13(1):3248.

[68]

Li S, Porcel E, Remita H, et al. Platinum nanoparticles: an exquisite tool to overcome radioresistance. Cancer Nanotechnol. 2017;8(1):4.

[69]

Jeynes JCG, Merchant MJ, Spindler A, Wera AC, Kirkby KJ. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Phys Med Biol. 2014;59(21):6431-6443.

[70]

Porcel E, Kobayashi K, Usami N, Remita H, Le Sech C, Lacombe S. Photosensitization of plasmid-DNA loaded with platinum nanoparticles and irradiated by low energy X-rays. J Phys: Conf Ser. 2011;261:012004.

[71]

Peukert D, Kempson I, Douglass M, Bezak E. Gold nanoparticle enhanced proton therapy: a Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield. Med Phys. 2020;47(2):651-661.

[72]

AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279-290.

[73]

Zhang L, Zhu C, Huang R, Ding Y, Ruan C, Shen XC. Mechanisms of reactive oxygen species generated by inorganic nanomaterials for cancer therapeutics. Front Chem. 2021;9:630969.

[74]

Zhang C, Wang X, Du J, Gu Z, Zhao Y. Reactive oxygen species-regulating strategies based on nanomaterials for disease treatment. Adv Sci. 2021;8(3):2002797.

[75]

Xu C, Yuan Z, Kohler N, Kim J, Chung MA, Sun S. FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc. 2009;131(42):15346-15351.

[76]

Klein S, Sommer A, Distel LVR, Neuhuber W, Kryschi C. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun. 2012;425(2):393-397.

[77]

Usami N, Furusawa Y, Kobayashi K, et al. Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions. Int J Radiat Biol. 2009;84(7):603-611.

[78]

Decrock E, Hoorelbeke D, Ramadan R, et al. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? Biochim Biophys Acta Mol Cell Res. 2017;1864(6):1099-1120.

[79]

Corbet C, Feron O. Cancer cell metabolism and mitochondria: nutrient plasticity for TCA cycle fueling. Biochim Biophys Acta Rev Cancer. 2017;1868(1):7-15.

[80]

Mcmahon SJ, Mcnamara AL, Schuemann J, Prise KM, Paganetti H. Mitochondria as a target for radiosensitisation by gold nanoparticles. J Phys: Conf Ser. 2017;777:012008.

[81]

Fang X, Wang Y, Ma X, et al. Mitochondria-targeting Au nanoclusters enhance radiosensitivity of cancer cells. J Mater Chem B. 2017;5(22):4190-4197.

[82]

Taggart LE, McMahon SJ, Currell FJ, Prise KM, Butterworth KT. The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnol. 2014;5(1):5.

[83]

Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc. 2010;132(5):1517-1519.

[84]

Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S. Effect of nanoparticles on the cell life cycle. Chem Rev. 2011;111(5):3407-3432.

[85]

Mackey MA, Saira F, Mahmoud MA, El-Sayed MA. Inducing cancer cell death by targeting its nucleus: solid gold nanospheres versus hollow gold nanocages. Bioconjug Chem. 2013;24(6):897-906.

[86]

Taupin F, Flaender M, Delorme R, et al. Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys Med Biol. 2015;60(11):4449-4464.

[87]

Banáth JP, Olive PL. Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res. 2003;63(15):4347-4350.

[88]

Subiel A, Ashmore R, Schettino G. Standards and methodologies for characterizing radiobiological impact of high-Z nanoparticles. Theranostics. 2016;6(10):1651-1671.

[89]

Penninckx S, Heuskin AC, Michiels C, Lucas S. The role of thioredoxin reductase in gold nanoparticle radiosensitization effects. Nanomedicine. 2018;13(22):2917-2937.

[90]

Cui L, Tse K, Zahedi P, et al. Hypoxia and cellular localization influence the radiosensitizing effect of gold nanoparticles (AuNPs) in breast cancer cells. Radiat Res. 2014;182(5):475-488.

[91]

Jain S, Coulter JA, Hounsell AR, et al. Cell-specific radio-sensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys. 2011;79(2):531-539.

[92]

Li JJ, Zou L, Hartono D, et al. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater. 2008;20(1):138-142.

[93]

Penninckx S, Heuskin AC, Michiels C, Lucas S. Gold nano-particles as a potent radiosensitizer: a transdisciplinary approach from physics to patient. Cancers. 2020;12(8):2021.

[94]

Wojewódzka M, Lankoff A, Dusińska M, et al. Treatment with silver nanoparticles delays repair of X-ray induced DNA damage in HepG2 cells. Nukleonika. 2011;56(1):29-33.

[95]

Niedre M, Patterson MS, Wilson BC. Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem Photobiol. 2002;75(4):382-391.

[96]

Piao MJ, Kang KA, Lee IK, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2011;201(1):92-100.

[97]

Chang H. Stimulation of glutathione depletion, ROS production and cell cycle arrest of dental pulp cells and gingival epithelial cells by HEMA. Biomaterials. 2005;26(7):745-753.

[98]

Yan X, Song Y, Zhu C, et al. Graphene quantum dot-MnO2 nanosheet based optical sensing platform: a sensitive fluorescence “turn off-on” nanosensor for glutathione detection and intracellular imaging. ACS Appl Mater Interfaces. 2016;8(34):21990-21996.

[99]

Ju E, Dong K, Chen Z, et al. Copper (II)-graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy. Angew Chem Int Ed. 2016;55(38):11467-11471.

[100]

Ma Z, Zhang M, Jia X, et al. FeIII-doped two-dimensional C3N4Nanofusiform: a new O2-evolving and mitochondriatargeting photodynamic agent for MRI and enhanced antitumor therapy. Small. 2016;12(39):5477-5487.

[101]

Chen H, Tian J, He W, Guo Z. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J Am Chem Soc. 2015;137(4):1539-1547.

[102]

Liu Y, Liu Y, Bu W, et al. Hypoxia induced by upconversion-based photodynamic therapy: towards highly effective synergistic bioreductive therapy in tumors. Angew Chem Int Ed. 2015;54(28):8105-8109.

[103]

Lei C, Yating Y, Yanlin Z, et al. X-ray-triggered CO-release from gold nanocluster: all-in-one nanoplatforms for cancer targeted gas and radio synergistic therapy. Adv Mater. 2024;36(25):e2401017.

[104]

Luo D, Wang X, Zeng S, Ramamurthy G, Burda C, Basilion JP. Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small. 2019;15(34):e1900968.

[105]

Qin X, Yang C, Xu H, et al. Cell-derived biogenetic gold nanoparticles for sensitizing radiotherapy and boosting immune response against cancer. Small. 2021;17(50):e2103984.

[106]

Dong CY, Hong S, Zheng DW, et al. Multifunctionalized gold sub-nanometer particles for sensitizing radiotherapy against glioblastoma. Small. 2021;17(5):e2006582.

[107]

Luan S, Xie R, Yang Y, et al. Acid-responsive aggregated gold nanoparticles for radiosensitization and synergistic chemoradiotherapy in the treatment of esophageal cancer. Small. 2022;18(19):e2200115.

[108]

Xiao X, Wang Y, Chen J, et al. Self-targeting platinum (IV) amphiphilic prodrug nano-assembly as radiosensitizer for synergistic and safe chemoradiotherapy of hepatocellular carcinoma. Biomaterials. 2022;289:121793.

[109]

Hua Y, Huang JH, Shao ZH, et al. Composition-dependent enzyme mimicking activity and radiosensitizing effect of bimetallic clusters to modulate tumor hypoxia for enhanced cancer therapy. Adv Mater. 2022;34(31):e2203734.

[110]

Ding Y, Xiao X, Zeng L, et al. Platinum-crosslinking polymeric nanoparticle for synergetic chemoradiotherapy of nasopharyngeal carcinoma. Bio Mater. 2021;6(12):4707-4716.

[111]

Li Y, Yun KH, Lee H, Goh SH, Suh YG, Choi Y. Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials. 2019;197:12-19.

[112]

Song Z, Liu T, Lai H, et al. A universally EDTA-assisted synthesis of polytypic bismuth telluride nanoplates with a size-dependent enhancement of tumor radiosensitivity and metabolism in vivo. ACS Nano. 2022;16(3):4379-4396.

[113]

Pan P, Dong X, Chen Y, Zeng X, Zhang X. Engineered bacteria for enhanced radiotherapy against breast carcinoma. ACS Nano. 2022;16(1):801-812.

[114]

Du J, Gu Z, Yan L, et al. Poly(vinylpyrollidone)- and selenocysteine-modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues. Adv Mater. 2017;29(34):1701268.

[115]

Guo Z, Zhu S, Yong Y, et al. Synthesis of BSA-Coated BiOI@Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Adv Mater. 2017;29(44):1704136.

[116]

Liu J, Zhang J, Song K, et al. Tumor microenvironment modulation platform based on composite biodegradable bismuthmanganese radiosensitizer for inhibiting radioresistant hypoxic tumors. Small. 2021;17(34):e2101015.

[117]

Liu N, Zhu J, Zhu W, et al. X-ray-induced release of nitric oxide from hafnium-based nanoradiosensitizers for enhanced radioimmunotherapy. Adv Mater. 2023;35(29):e2302220.

[118]

Li J, Lv Z, Guo Y, et al. Hafnium (Hf)-chelating porphyrindecorated gold nanosensitizers for enhanced radioradiodynamic therapy of colon carcinoma. ACS Nano. 2023;17(24):25147-25156.

[119]

Cao Y, Ding S, Hu Y, et al. An immunocompetent hafnium oxide-based sting nanoagonist for cancer radioimmunotherapy. ACS Nano. 2024;18(5):4189-4204.

[120]

Fu Z, Liu Z, Wang J, et al. Interfering biosynthesis by nanoscale metal-organic frameworks for enhanced radiation therapy. Biomaterials. 2023;295:122035.

[121]

Yong Y, Zhang C, Gu Z, et al. Polyoxometalate-based radio-sensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS Nano. 2017;11(7):7164-7176.

[122]

Chen Y, Li N, Wang J, et al. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gddoped titania nanosensitizer. Theranostics. 2019;9(1):167-178.

[123]

Hu B, Xiao X, Chen P, et al. Enhancing anti-tumor effect of ultrasensitive bimetallic RuCu nanoparticles as radio-sensitizers with dual enzyme-like activities. Biomaterials. 2022;290:121811.

[124]

Gong F, Chen J, Han X, et al. Core-shell TaOx@MnO2 nanoparticles as a nano-radiosensitizer for effective cancer radiotherapy. J Mater Chem B. 2018;6(15):2250-2257.

[125]

Laprise-Pelletier M, Lagueux J, Côté MF, Lagrange T, Fortin MA. Cancer therapy: Low-dose prostate cancer brachytherapy with radioactive palladium–gold nanoparticles. Adv Healthc Mater. 2017;6(4):1601120.

[126]

Antosh MP, Wijesinghe DD, Shrestha S, et al. Enhancement of radiation effect on cancer cells by gold-pHLIP. Proc Natl Acad Sci U S A. 2015;112(17):5372-5376.

[127]

Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev. 2015;109:84-101.

[128]

Carter JD, Cheng NN, Qu Y, Suarez GD, Guo T. Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem B. 2007;111(40):11622-11625.

[129]

Zheng S, Gao D, Wu Y, et al. X-ray activatable Au/Ag nanorods for tumor radioimmunotherapy sensitization and monitoring of the therapeutic response using NIR-II photoacoustic imaging. Adv Sci. 2023;10(11):e2206979.

[130]

Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2-25.

[131]

Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2016;17(1):20-37.

[132]

Yu W, Hu C, Gao H. Intelligent size-changeable nanoparticles for enhanced tumor accumulation and deep penetration. ACS Appl Bio Mater. 2020;3(9):5455-5462.

[133]

Yeh TH, Chen YR, Chen SY, et al. Selective intracellular delivery of recombinant arginine deiminase (ADI) using pH-sensitive cell penetrating peptides to overcome ADI resistance in hypoxic breast cancer cells. Mol Pharm. 2015;13(1):262-271.

[134]

Porcel E, Liehn S, Remita H, et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology. 2010;21(8):85103.

[135]

Porcel E, Li S, Usami N, Remita H, Lacombe S. Nano-sensitization under gamma rays and fast ion radiation. J Phys Conf Ser. 2012;373(1):012006.

[136]

Lu Y, Aimetti AA, Langer R, Gu Z. Bioresponsive materials. Nat Rev Mater. 2016;1:16075.

[137]

Lu H, Zhang Q, He S, et al. Reduction-sensitive fluorinated-Pt(IV) universal transfection nanoplatform facilitating CT45-targeted CRISPR/dCaS9 activation for synergistic and individualized treatment of ovarian cancer. Small. 2021;17(41):e2102494.

[138]

Deng Y, Wang Y, Jia F, et al. Tailoring supramolecular prodrug nanoassemblies for reactive nitrogen species-potentiated chemotherapy of liver cancer. ACS Nano. 2021;15(5):8663-8675.

[139]

Liu H, Duan X, Lv YK, Zhu L, Peng P. Encapsulating metal nanoclusters inside porous organic cage towards enhanced radio-sensitivity and solubility. Chem Eng J. 2021;4:130872.

[140]

Liu H, Cheng R, Dong X, et al. BiO2-x nanosheets as radio-sensitizers with catalase-like activity for hypoxia alleviation and enhancement of the radiotherapy of tumors. Inorg Chem. 2020;59(6):3482-3493.

[141]

Lin A, Sun Z, Xu X, et al. Self-cascade uricase/catalase mimics alleviate acute gout. Nano Lett. 2022;22(1):508-516.

[142]

Zhang L, Huang Y, Hong S. Gemcitabine plus cisplatin versus fluorouracil plus cisplatin in recurrent or metastatic nasopharyngeal carcinoma: a multicentre, randomised, open-label, phase 3 trial. Lancet. 2016;388(10054):1883-1892.

[143]

Chen Y, Chan A, Le Q, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394(10192):64-80.

[144]

Fan W, Tang W, Lau J, et al. Breaking the depth dependence by nanotechnology-enhanced X-ray-excited deep cancer theranostics. Adv Mater. 2019;31(12):e1806381.

[145]

Alqathami M, Blencowe A, Yeo UJ, Franich R, Geso M. Enhancement of radiation effects by bismuth oxide nanoparticles for kilovoltage x-ray beams: a dosimetric study using a novel multi-compartment 3D radiochromic dosimeter. J Phys Conf Ser. 2013;444(1):012025.

[146]

Badrigilan S, Heydarpanahi F, Choupani J, et al. A review on the biodistribution, pharmacokinetics and toxicity of bismuth-based nanomaterials. Int J Nanomedicine. 2020;15:7079-7096.

[147]

Shahbazi MA, Faghfouri L, Ferreira MPA, et al. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev. 2020;49(4):1253-1321.

[148]

Xiao L, Chen B, Wang W, et al. Multifunctional Au@AgBiS2 nanoparticles as high efficiency radiosensitizers to induce pyroptosis for cancer radioimmunotherapy. Adv Sci (Weinh). 2023;10(30):e2302141.

[149]

Bonvalot S, Rutkowski P, Thariat J, et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radio-therapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2–3, randomised, controlled trial. Lancet Oncol. 2019;20(8):1148-1159.

[150]

Blok JM, Groot HJ, Huele EH, et al. Dose-dependent effect of platinum-based chemotherapy on the risk of metachronous contralateral testicular cancer. J Clin Oncol. 2021;39(4):319-327.

[151]

Vilotte F, Jumeau R, Bourhis J. High Z nanoparticles and radiotherapy: a critical view. Lancet Oncol. 2019;20(10): e557.

[152]

Lu K, He C, Guo N, et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat Biomed Eng. 2018;2(8):600-610.

[153]

Villaraza AJ, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev. 2010;110(5):2921-2959.

[154]

Freedman JD, Lusic H, Snyder BD, Grinstaff MW. Tantalum oxide nanoparticles for the imaging of articular cartilage using X-ray computed tomography: visualization of exvivo/invivo murine tibia and exvivo human index finger cartilage. Angew Chem Int Ed Engl. 2014;53(32):8406-8410.

[155]

Huang Z, Wang Y, Yao D, Wu J, Hu Y, Yuan A. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat Commun. 2021;12(1):145.

[156]

Feng L, Dong Z, Liang C, et al. Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials. 2018;181:81-91.

[157]

Zhang C, Wang X, Du J, Gu Z, Zhao Y. Reactive oxygen species-regulating sstrategies based on nanomaterials for disease treatment. Adv Sci. 2021;8(3):2002797.

[158]

Jeynes JC, Merchant MJ, Spindler A, Wera AC, Kirkby KJ. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Phys Med Biol. 2014;59(21):6431-6443.

[159]

Duo Y, Huang Y, Liang W, et al. Ultraeffective cancer therapy with an antimonene-based X-ray radiosensitizer. Adv Funct Mater. 2020;30(4):1906010.

[160]

Sharma RA, Plummer R, Stock JK, et al. Clinical development of new drug-radiotherapy combinations. Nat Rev Clin Oncol. 2016;13(10):627-642.

RIGHTS & PERMISSIONS

2024 The Author(s). Malignancy Spectrum published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1890KB)

607

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/