Hepatitis B virus integration and hepatocarcinogenesis

Linlin Ma , Shuzhen Chen , Hongyang Wang , Lei Chen

Liver Research ›› 2025, Vol. 9 ›› Issue (3) : 189 -198.

PDF (3427KB)
Liver Research ›› 2025, Vol. 9 ›› Issue (3) :189 -198. DOI: 10.1016/j.livres.2025.09.002
Review Articles
research-article

Hepatitis B virus integration and hepatocarcinogenesis

Author information +
History +
PDF (3427KB)

Abstract

Hepatitis B virus (HBV) is the most common cause of hepatocellular carcinoma (HCC), which is the predominant liver cancer type in Southeast Asia. Approximately 350 million individuals suffer from persistent hepatitis B infection worldwide. HBV promotes HCC development through direct and indirect mechanisms. HBV DNA integrates into the host genome during the initial stages of tumorigenesis, causing insertional mutagenesis of cancer-related genes and genomic instability. Extrachromosomal circular DNA (ecDNA) is formed, which is efficiently amplified in large quantities to express viral genes and host oncogenes. Moreover, virus-associated proteins, such as the regulatory HBV X (HBx) protein and/or the modified preS/S envelope protein, alter the expression of genes associated with multiple functions in host cells. In this review, we summarize the role of the HBx and preS/S proteins in promoting tumorigenesis. In addition to summarizing the specific mechanism of HBV-related tumorigenesis, the concerns and perspectives for future study are discussed.

Keywords

Hepatocellular carcinoma (HCC) / Extrachromosomal circular DNA (ecDNA) / Hepatitis B virus X (HBx) protein / Hepatocarcinogenesis

Cite this article

Download citation ▾
Linlin Ma, Shuzhen Chen, Hongyang Wang, Lei Chen. Hepatitis B virus integration and hepatocarcinogenesis. Liver Research, 2025, 9(3): 189-198 DOI:10.1016/j.livres.2025.09.002

登录浏览全文

4963

注册一个新账户 忘记密码

Authors’ contributions

Linlin Ma: Writing - review & editing, Writing - original draft, Visualization. Shuzhen Chen: Writing - review & editing, Writing - original draft, Funding acquisition. Hongyang Wang: Concep-tualization, Supervision, Project administration, Writing - review & editing, Funding acquisition. Lei Chen: Conceptualization, Su-pervision, Project administration, Writing - review & editing, Funding acquisition.

Declaration of competing interest

The authors declare that there is no conflict of interest.

Acknowledgements

This work was supported by the National Natural Science Foun-dation of China (grant numbers: 81988101, 82173146, U21A20376, 82425038, and 82421005), the Natural Science Foundation of Shanghai (grant numbers: 22140901000 and 21XD1404600), and the National Key R&D Program of China (grant numbers: 2023YFC2507500).

References

[1]

Venook AP, Papandreou C, Furuse J, The incidence and epide-miology of hepatocellular carcinoma: a global and regional perspective. Oncologist. 2010; 15(Suppl 4):5-13. https://doi.org/10.1634/theoncolo-gist.2010-S4-05.

[2]

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71:209-249. https://doi.org/10.3322/caac.21660.

[3]

Hsu YC, Huang DQ, Nguyen MH. Global burden of hepatitis B virus: current status, missed opportunities and a call for action. Nat Rev Gastro-enterol Hepatol. 2023; 20:524-537. https://doi.org/10.1038/s41575-023-00760-9.

[4]

Mak LY, Liu K, Chirapongsathorn S, et al. Liver diseases and hepatocellular carcinoma in the Asia-Pacific region: burden, trends, challenges and future directions. Nat Rev Gastroenterol Hepatol. 2024; 21:834-851. https://doi.org/10.1038/s41575-024-00967-4.

[5]

Polaris Observatory Collaborators. Global prevalence, cascade of care, and pro-phylaxis coverage of hepatitis B in 2022: a modelling study. Lancet Gastroenterol Hepatol. 2023; 8:879-907. https://doi.org/10.1016/S2468-125300197-8.

[6]

Tanaka M, Katayama F, Kato H, et al. Hepatitis B and C virus infection and hepatocellular carcinoma in China: a review of epidemiology and control mea-sures. J Epidemiol. 2011; 21:401-416. https://doi.org/10.2188/jea.je20100190.

[7]

Funk AL, Lu Y, Yoshida K, et al. Efficacy and safety of antiviral prophylaxis during pregnancy to prevent mother-to-child transmission of hepatitis B virus: a systematic review and meta-analysis. Lancet Infect Dis. 2021; 21: 70-84. https://doi.org/10.1016/S1473-309930586-7.

[8]

Terrault NA, Levy MT, Cheung KW, Jourdain G. Viral hepatitis and pregnancy. Nat Rev Gastroenterol Hepatol. 2021; 18:117-130. https://doi.org/10.1038/s41575-020-00361-w.

[9]

Abdelhamed W, El-Kassas M. Hepatitis B virus as a risk factor for hepato-cellular carcinoma: there is still much work to do. Liver Res. 2024; 8:83-90. https://doi.org/10.1016/j.livres.2024.05.004.

[10]

Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004; 127(5Suppl 1): S35-S50. https://doi.org/10.1053/j.gastro.2004.09.014.

[11]

Mühlemann B, Jones TC, Damgaard PB, et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature. 2018; 557:418-423. https://doi.org/10.1038/s41586-018-0097-z.

[12]

Locarnini SA, Littlejohn M, Yuen LKW. Origins and evolution of the primate hepatitis B virus. Front Microbiol. 2021;12:653684. https://doi.org/10.3389/fmicb.2021.653684.

[13]

Tsukuda S, Watashi K. Hepatitis B virus biology and life cycle. Antiviral Res. 2020;182:104925. https://doi.org/10.1016/j.antiviral.2020.104925.

[14]

Tong S, Revill P. Overview of hepatitis B viral replication and genetic vari-ability. J Hepatol. 2016;64:S4-S16. https://doi.org/10.1016/j.jhep.2016.01.027.

[15]

Venkatakrishnan B, Zlotnick A. The structural biology of hepatitis B virus: form and function. Annu Rev Virol. 2016; 3:429-451. https://doi.org/10.1146/annurev-virology-110615-042238.

[16]

Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009; 51:581-592. https://doi.org/10.1016/j.jhep.2009.05.022.

[17]

Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology. 2015;479-480:672-686. https://doi.org/10.1016/j.virol.2015.02.031.

[18]

Staprans S, Loeb DD, Ganem D. Mutations affecting hepadnavirus plus-strand DNA synthesis dissociate primer cleavage from translocation and reveal the origin of linear viral DNA. J Virol. 1991; 65:1255-1262. https://doi.org/10.1128/JVI.65.3.1255-1262.1991.

[19]

Yang W, Summers J. Integration of hepadnavirus DNA in infected liver: ev-idence for a linear precursor. J Virol. 1999; 73:9710-9717. https://doi.org/10.1128/JVI.73.12.9710-9717.1999.

[20]

Zoulim F, Chen PJ, Dandri M, Kennedy PT, Seeger C. Hepatitis B virus DNA integration: implications for diagnostics, therapy, and outcome. J Hepatol. 2024; 81:1087-1099. https://doi.org/10.1016/j.jhep.2024.06.037.

[21]

Podlaha O, Gane E, Brunetto M, et al. Large-scale viral genome analysis identifies novel clinical associations between hepatitis B virus and chroni-cally infected patients. Sci Rep. 2019;9:10529. https://doi.org/10.1038/s41598-019-46609-7.

[22]

Lee JH, Ku JL, Park YJ, Lee KU, Park JG. Establishment and characterization of four human hepatocellular carcinoma cell lines containing hepatitis B virus DNA. World J Gastroenterol. 1999; 5:289-295. https://doi.org/10.3748/wjg.v5.i4.289.

[23]

Edman JC, Gray P, Valenzuela P, Rall LB, Rutter WJ. Integration of hepatitis B virus sequences and their expression in a human hepatoma cell. Nature. 1980; 286:535-538. https://doi.org/10.1038/286535a0.

[24]

Bouchard MJ, Navas-Martin S. Hepatitis B and C virus hepatocarcinogenesis: lessons learned and future challenges. Cancer Lett. 2011; 305:123-143. https://doi.org/10.1016/j.canlet.2010.11.014.

[25]

Bréchot C, Gozuacik D, Murakami Y, Paterlini-Bréchot P. Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Semin Cancer Biol. 2000; 10:211-231. https://doi.org/10.1006/scbi.2000.0321.

[26]

Tu T, Budzinska MA, Vondran FWR, Shackel NA, Urban S. Hepatitis B virus DNA integration occurs early in the viral life cycle in an in vitro infection model via sodium taurocholate cotransporting polypeptide-dependent up-take of enveloped virus particles. J Virol. 2018;92:e02007-e02017. https://doi.org/10.1128/JVI.02007-17.

[27]

Tu T, Budzinska MA, Shackel NA, Urban S. HBV DNA integration: molecular mechanisms and clinical implications. Viruses. 2017;9:75. https://doi.org/10.3390/v9040075.

[28]

Chow N, Wong D, Lai CL, et al. Effect of antiviral treatment on hepatitis B virus integration and hepatocyte clonal expansion. Clin Infect Dis. 2023;76: e801-e809. https://doi.org/10.1093/cid/ciac383.

[29]

Yu X, Gong Q, Yu D, et al. Spatial transcriptomics reveals a low extent of transcriptionally active hepatitis B virus integration in patients with HBsAg loss. Gut. 2024; 73:797-809. https://doi.org/10.1136/gutjnl-2023-330577.

[30]

Sitia G, Aiolfi R, Di Lucia P, et al. Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proc Natl Acad Sci U S A. 2012;109:E2165-E2172. https://doi.org/10.1073/pnas.1209182109.

[31]

Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV. Immune patho-genesis of hepatocellular carcinoma. J Exp Med. 1998; 188:341-350. https://doi.org/10.1084/jem.188.2.341.

[32]

Nakamoto Y, Suda T, Momoi T, Kaneko S. Different procarcinogenic poten-tials of lymphocyte subsets in a transgenic mouse model of chronic hepatitis B. Cancer Res. 2004; 64:3326-3333. https://doi.org/10.1158/0008-5472.can-03-3817.

[33]

Iannacone M, Guidotti LG. Immunobiology and pathogenesis of hepatitis B virus infection. Nat Rev Immunol. 2022; 22:19-32. https://doi.org/10.1038/s41577-021-00549-4.

[34]

Nault JC, Datta S, Imbeaud S, et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet. 2015; 47: 1187-1193. https://doi.org/10.1038/ng.3389.

[35]

La Bella T, Imbeaud S, Peneau C, et al. Adeno-associated virus in the liver: natural history and consequences in tumour development. Gut. 2020; 69: 737-747. https://doi.org/10.1136/gutjnl-2019-318281.

[36]

Kakiuchi N, Ogawa S. Clonal expansion in non-cancer tissues. Nat Rev Cancer. 2021; 21:239-256. https://doi.org/10.1038/s41568-021-00335-3.

[37]

Sung WK, Zheng H, Li S, et al. Genome-wide survey of recurrent HBV inte-gration in hepatocellular carcinoma. Nat Genet. 2012; 44:765-769. https://doi.org/10.1038/ng.2295.

[38]

Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: cell cycle and proliferation-dependent regulation. Semin Cancer Biol. 2016; 37-38: 51-64. https://doi.org/10.1016/j.semcancer.2016.03.003.

[39]

Zhao LH, Liu X, Yan HX, et al. Genomic and oncogenic preference of HBV integration in hepatocellular carcinoma. Nat Commun. 2016;7:12992. https://doi.org/10.1038/ncomms12992.

[40]

Fujimoto A, Totoki Y, Abe T, et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent muta-tions in chromatin regulators. Nat Genet. 2012; 44:760-764. https://doi.org/10.1038/ng.2291.

[41]

Péneau C, Imbeaud S, Bella TL, et al. Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma. Gut. 2022; 71:616-626. https://doi.org/10.1136/gutjnl-2020-323153.

[42]

Ding D, Lou X, Hua D, et al. Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing-based approach. PLoS Genet. 2012;8:e1003065. https://doi.org/10.1371/journal.pgen.1003065.

[43]

Lin CL, Kao JH. Development of hepatocellular carcinoma in treated and untreated patients with chronic hepatitis B virus infection. Clin Mol Hepatol. 2023; 29:605-622. https://doi.org/10.3350/cmh.2022.0342.

[44]

Hong W, Zhang Y, Wang S, et al. Deciphering the immune modulation through deep transcriptomic profiling and therapeutic implications of DNA damage repair pattern in hepatocellular carcinoma. Cancer Lett. 2024;582: 216594. https://doi.org/10.1016/j.canlet.2023.216594.

[45]

Paterlini-Bréchot P, Saigo K, Murakami Y, et al. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene. 2003; 22:3911-3916. https://doi.org/10.1038/sj.onc.1206492.

[46]

Ferber MJ, Montoya DP, Yu C, et al. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse tran-scriptase (hTERT) gene in liver and cervical cancers. Oncogene. 2003; 22: 3813-3820. https://doi.org/10.1038/sj.onc.1206528.

[47]

Schulze K, Imbeaud S, Letouzé E, et al. Exome sequencing of hepato-cellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015; 47:505-511. https://doi.org/10.1038/ng.3252.

[48]

Khan AH, Yaqub M, Parvez S. Recurrence relations between moments of order statistics. Nav Res Logist Q. 1983; 30:419-441. https://doi.org/10.1002/nav.3800300307.

[49]

Cordani M, Strippoli R, Trionfetti F, et al. Immune checkpoints between epithelial-mesenchymal transition and autophagy: a conflicting triangle. Cancer Lett. 2024;585:216661. https://doi.org/10.1016/j.canlet.2024.216661.

[50]

Liang HW, Wang N, Wang Y, et al. Hepatitis B virus-human chimeric tran-script HBx-LINE1 promotes hepatic injury via sequestering cellular micro-RNA-122. J Hepatol. 2016; 64:278-291. https://doi.org/10.1016/j.jhep.2015.09.013.

[51]

Yan H, Yang Y, Zhang L, et al. Characterization of the genotype and inte-gration patterns of hepatitis B virus in early- and late-onset hepatocellular carcinoma. Hepatology. 2015; 61:1821-1831. https://doi.org/10.1002/hep.27722.

[52]

Cleary SP, Jeck WR, Zhao X, et al. Identification of driver genes in hepato-cellular carcinoma by exome sequencing. Hepatology. 2013; 58:1693-1702. https://doi.org/10.1002/hep.26540.

[53]

Nakayama N, Nakayama K, Shamima Y, et al. Gene amplification CCNE1 is related to poor survival and potential therapeutic target in ovarian cancer. Cancer. 2010; 116:2621-2634. https://doi.org/10.1002/cncr.24987.

[54]

Ding D, Lou X, Hua D, et al. Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing-based approach. PLoS Genet. 2012;8:e1003065. https://doi.org/10.1371/journal. pgen.1003065.

[55]

Lau CC, Sun T, Ching AK, et al. Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell. 2014; 25: 335-349. https://doi.org/10.1016/j.ccr.2014.01.030.

[56]

Liang HW, Wang N, Wang Y, et al. Hepatitis B virus-human chimeric tran-script HBx-LINE1 promotes hepatic injury via sequestering cellular micro-RNA-122. J Hepatol. 2016; 64:278-291. https://doi.org/10.1016/j.jhep.2015.09.013.

[57]

Chen Y, Shen A, Rider PJ, et al. A liver-specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication. FASEB J. 2011; 25:4511-4521. https://doi.org/10.1096/fj.11-187781.

[58]

Wang S, Qiu L, Yan X, et al. Loss of microRNA 122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin G(1)-modulated P53 activity. Hepatology. 2012; 55:730-741. https://doi.org/10.1002/hep.24809.

[59]

Cao Q, Imbeaud S, Datta S, Zucman-Rossi J. Authors’ response: virus-host interactions in HBV-related hepatocellular carcinoma: more to be revealed? Gut. 2015; 64:853-854. https://doi.org/10.1136/gutjnl-2014-308482.

[60]

Wu S, Turner KM, Nguyen N, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature. 2019; 575:699-703. https://doi.org/10.1038/s41586-019-1763-5.

[61]

Kang X, Li X, Zhou J, et al. Extrachromosomal DNA replication and mainte-nance couple with DNA damage pathway in tumors. Cell. 2025; 188: 3405- 3421 (e27). https://doi.org/10.1016/j.cell.2025.04.012.

[62]

Hung KL, Luebeck J, Dehkordi SR, et al. Targeted profiling of human extra-chromosomal DNA by CRISPR-CATCH. Nat Genet. 2022; 54:1746-1754. https://doi.org/10.1038/s41588-022-01190-0.

[63]

Kumar P, Dillon LW, Shibata Y, Jazaeri AA, Jones DR, Dutta A. Normal and cancerous tissues release extrachromosomal circular DNA (eccDNA) into the circulation. Mol Cancer Res. 2017; 15:1197-1205. https://doi.org/10.1158/1541-7786.MCR-17-0095.

[64]

Chen L, Zhang C, Xue R, et al. Deep whole-genome analysis of 494 hepato-cellular carcinomas. Nature. 2024; 627:586-593. https://doi.org/10.1038/s41586-024-07054-3.

[65]

Li Z, Wang B, Liang H, Han L. Pioneering insights of extrachromosomal DNA (ecDNA) generation, action and its implications for cancer therapy. Int J Biol Sci. 2022; 18:4006-4025. https://doi.org/10.7150/ijbs.73479.

[66]

Wang T, Zhang H, Zhou Y, Shi J. Extrachromosomal circular DNA: a new potential role in cancer progression. J Transl Med. 2021;19:257. https://doi.org/10.1186/s12967-021-02927-x.

[67]

Pecorino LT, Verhaak RGW, Henssen A, Mischel PS. Extrachromosomal DNA (ecDNA): an origin of tumor heterogeneity, genomic remodeling, and drug resistance. Biochem Soc Trans. 2022; 50:1911-1920. https://doi.org/10.1042/BST20221045.

[68]

Guichard C, Amaddeo G, Imbeaud S, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and path-ways in hepatocellular carcinoma. Nat Genet. 2012; 44:694-698. https://doi.org/10.1038/ng.2256.

[69]

Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015; 149: 1226- 1239 (e4). https://doi.org/10.1053/j.gastro.2015.05.061.

[70]

Jiang Z, Jhunjhunwala S, Liu J, et al. The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res. 2012; 22:593-601. https://doi.org/10.1101/gr.133926.111.

[71]

Dandri M, Burda MR, Bürkle A, et al. Increase in de novo HBV DNA in-tegrations in response to oxidative DNA damage or inhibition of poly(ADP-ribosyl)ation. Hepatology. 2002; 35:217-223. https://doi.org/10.1053/jhep.2002.30203.

[72]

Wong DK, Cheng SCY, Mak LL, et al. Among patients with undetectable hepatitis B surface antigen and hepatocellular carcinoma, a high proportion has integration of HBV DNA into hepatocyte DNA and no cirrhosis. Clin Gastroenterol Hepatol. 2020; 18:449-456. https://doi.org/10.1016/j.cgh.2019.06.029.

[73]

Wu DH. Molecular mechanism of hepatitis B virus X-associated hep-atocarcinogenesis. World Chin J Dig. 2014;22:3773. https://doi.org/10.11569/wcjd.v22.i25.3773.

[74]

Lucifora J, Arzberger S, Durantel D, et al. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J Hepatol. 2011; 55:996-1003. https://doi.org/10.1016/j.jhep.2011.02.015.

[75]

Pan J, Lian Z, Wallet S, Feitelson MA. The hepatitis B x antigen effector, URG7, blocks tumour necrosis factor α-mediated apoptosis by activation of phos-phoinositol 3-kinase and β-catenin. J Gen Virol. 2007; 88:3275-3285. https://doi.org/10.1099/vir.0.83214-0.

[76]

Maguire HF, Hoeffler JP, Siddiqui A. HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science. 1991; 252:842-844. https://doi.org/10.1126/science.1827531.

[77]

Decorsiére A, Mueller H, van Breugel PC, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016; 531: 386-389. https://doi.org/10.1038/nature17170.

[78]

Wang XW, Forrester K, Yeh H, Feitelson MA, Gu JR, Harris CC. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci U S A. 1994; 91:2230-2234. https://doi.org/10.1073/pnas.91.6.2230.

[79]

Zhao J, Wu G, Bu F, et al. Epigenetic silence of ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region- containing protein 1 (ASPP1) and ASPP2 genes promotes tumor growth in hepatitis B virus-positive hepatocellular carcinoma. Hepatology. 2010; 51:142-153. https://doi.org/10.1002/hep.23247.

[80]

Park SH, Jung JK, Lim JS, Tiwari I, Jang KL. Hepatitis B virus X protein over-comes all-trans retinoic acid-induced cellular senescence by downregulating levels of p16 and p21 via DNA methylation. J Gen Virol. 2011; 92:1309-1317. https://doi.org/10.1099/vir.0.029512-0.

[81]

Benn J, Schneider RJ. Hepatitis B virus HBx protein activates Ras-GTP com-plex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A. 1994; 91:10350-10354. https://doi.org/10.1073/pnas.91.22.10350.

[82]

Zhou Q, Li L, Sha F, et al. PTTG 1 reprograms asparagine metabolism to pro-mote hepatocellular carcinoma progression. Cancer Res. 2023; 83:2372-2386. https://doi.org/10.1158/0008-5472.CAN-22-3561.

[83]

Chen GG, Lai PB, Chan PK, et al. Decreased expression of Bid in human he-patocellular carcinoma is related to hepatitis B virus X protein. Eur J Cancer. 2001; 37:1695-1702. https://doi.org/10.1016/s0959-8049(01)00182-4.

[84]

Lee MO, Choi YH, Shin EC, et al. Hepatitis B virus X protein induced expression of interleukin 18 (IL-18): a potential mechanism for liver injury caused by hepatitis B virus (HBV) infection. J Hepatol. 2002; 37:380-386. https://doi.org/10.1016/s0168-8278(02)00181-2.

[85]

Wang S, Qiu L, Yan X, et al. Loss of microRNA 122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin G1-modulated P53 activity. Hepatology. 2012; 55:730-741. https://doi.org/10.1002/hep.24809.

[86]

Huang J, Wang Y, Guo Y, Sun S.Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carci-noma by targeting DNA methyltransferase 1. Hepatology. 2010; 52:60-70. https://doi.org/10.1002/hep.23660.

[87]

Sun Y, Teng Y, Wang L, et al. LINC 01431 promotes histone H4R3 methylation to impede HBV covalently closed circular DNA transcription by stabilizing PRMT1. Adv Sci (Weinh). 2022;9:e2103135. https://doi.org/10.1002/advs.202103135.

[88]

Zheng DL, Zhang L, Cheng N, et al. Epigenetic modification induced by hep-atitis B virus X protein via interaction with de novo DNA methyltransferase JDNMT3A. Hepatol. 2009; 50:377-387. https://doi.org/10.1016/j.jhep.2008.10.019.

[89]

Klein NP, Schneider RJ. Activation of Src family kinases by hepatitis B virus HBx protein and coupled signaling to Ras. Mol Cell Biol. 1997; 17:6427-6436. https://doi.org/10.1128/MCB.17.11.6427.

[90]

Lin X, Li AM, Li YH, et al. Silencing MYH 9 blocks HBx-induced GSK3β ubiq-uitination and degradation to inhibit tumor stemness in hepatocellular car-cinoma. Signal Transduct Target Ther. 2020;5:13. https://doi.org/10.1038/s41392-020-0111-4.

[91]

Cha MY, Kim CM, Park YM, Ryu WS. Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology. 2004; 39:1683-1693. https://doi.org/10.1002/hep.20245.

[92]

Yang B, Bouchard MJ. The hepatitis B virus X protein elevates cytosolic cal-cium signals by modulating mitochondrial calcium uptake. J Virol. 2012; 86: 313-327. https://doi.org/10.1128/JVI.06442-11.

[93]

Chen S, Dong Z, Yang P, et al. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis. Cancer Lett. 2017; 394:22-32. https://doi.org/10.1016/j.canlet.2017.02.011.

[94]

Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol. 2016;64:S84-S101. https://doi.org/10.1016/j.jhep.2016.02.021.

[95]

Ghidini M, Braconi C. Non-coding RNAs in primary liver cancer. Front Med (Lausanne). 2015;2:36. https://doi.org/10.3389/fmed.2015.00036.

[96]

Imbeaud S, Ladeiro Y, Zucman-Rossi J. Identification of novel oncogenes and tumor suppressors in hepatocellular carcinoma. Semin Liver Dis. 2010; 30: 75-86. https://doi.org/10.1055/s-0030-1247134.

[97]

Guerrieri F, Belloni L, D’Andrea D, et al. Genome-wide identification of direct HBx genomic targets. BMC Genomics. 2017;18:184. https://doi.org/10.1186/s12864-017-3561-5.

[98]

Salerno D, Chiodo L, Alfano V, et al. Hepatitis B protein HBx binds the DLEU2 lncRNA to sustain cccDNA and host cancer-related gene transcription. Gut. 2020; 69:2016-2024. https://doi.org/10.1136/gutjnl-2019-319637.

[99]

Zhou Y, Wang S, Ma JW, et al. Hepatitis B virus protein X-induced expression of the CXC chemokine IP-10 is mediated through activation of NF-kappaB and increases migration of leukocytes. J Biol Chem. 2010; 285:12159-12168. https://doi.org/10.1074/jbc.M109.067629.

[100]

Wei C, Ni C, Song T, et al. The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J Immunol. 2010; 185:1158-1168. https://doi.org/10.4049/jimmunol.0903874.

[101]

Lin N, Chen HY, Li D, Zhang SJ, Cheng ZX, Wang XZ. Apoptosis and its pathway in X gene-transfected HepG2 cells. World J Gastroenterol. 2005; 11: 4326-4331. https://doi.org/10.3748/wjg.v11.i28.4326.

[102]

Qian Y, Wang B, Ma A, et al. USP 16 downregulation by carboxyl-terminal truncated HBx promotes the growth of hepatocellular carcinoma cells. Sci Rep. 2016;6:33039. https://doi.org/10.1038/srep33039.

[103]

Ma NF, Lau SH, Hu L, et al. COOH-terminal truncated HBV X protein plays key role in hepatocarcinogenesis. Clin Cancer Res. 2008; 14:5061-5068. https://doi.org/10.1158/1078-0432.CCR-07-5082.

[104]

Yip WK, Cheng SL, Zhu R, et al. Carboxyl-terminal truncated HBx regulates a distinct microRNA transcription program in hepatocellular carcinoma development. PLoS One. 2011;6:e22888. https://doi.org/10.1371/journal.pone.0022888.

[105]

Zhu R, Mok MT, Kang W, et al. Truncated HBx-dependent silencing of GAS2 promotes hepatocarcinogenesis through deregulation of cell cycle, senes-cence and p53-mediated apoptosis. J Pathol. 2015; 237:38-49. https://doi.org/10.1002/path.4554.

[106]

Wooddell CI, Yuen MF, Chan LY, et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci Transl Med. 2017;9:eaan0241. https://doi.org/10.1126/scitranslmed.aan0241.

[107]

Rydell GE, Larsson SB, Prakash K, et al. Abundance of noncircular intrahepatic hepatitis B virus DNA may reflect frequent integration into human DNA in chronically infected patients. J Infect Dis. 2022; 225:1982-1990. https://doi.org/10.1093/infdis/jiaa572.

[108]

Podlaha O, Wu G, Downie B, et al. Genomic modeling of hepatitis B virus integration frequency in the human genome. PLoS One. 2019;14:e0220376. https://doi.org/10.1371/journal.pone.0220376.

[109]

van Buuren N, Ramirez R, Soulette C, et al. Targeted long-read sequencing reveals clonally expanded HBV-associated chromosomal translocations in patients with chronic hepatitis B. JHEP Rep. 2022;4:100449. https://doi.org/10.1016/j.jhepr.2022.100449.

[110]

Wang HC, Huang W, Lai MD, Su IJ. Hepatitis B virus pre-S mutants, endo-plasmic reticulum stress and hepatocarcinogenesis. Cancer Sci. 2006; 97: 683-688. https://doi.org/10.1111/j.1349-7006.2006.00235.x.

[111]

Luan F, Liu H, Gao L, et al. Hepatitis B virus protein preS2 potentially pro-motes HCC development via its transcriptional activation of hTERT. Gut. 2009; 58:1528-1537. https://doi.org/10.1136/gut.2008.174029.

[112]

Wang HC, Chang WT, Chang WW, et al. Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepa-tocytes. Hepatology. 2005; 41:761-770. https://doi.org/10.1002/hep.20615.

[113]

Pollicino T, Cacciola I, Saffioti F, Raimondo G. Hepatitis B virus PreS/S gene variants: pathobiology and clinical implications. J Hepatol. 2014; 61:408-417. https://doi.org/10.1016/j.jhep.2014.04.041.

[114]

Bruss V. Revisiting the cytopathic effect of hepatitis B virus infection. Hep-atology. 2002; 36:1327-1329. https://doi.org/10.1053/jhep.2002.37351.

[115]

Chisari FV, Filippi P, Mclachlan A, et al. Expression of hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen secretion in transgenic mice. J Virol. 1986; 60:880-887. https://doi.org/10.1128/JVI.60.3.880-887.1986.

[116]

Chisari FV, Klopchin K, Moriyama T, et al. Molecular pathogenesis of hepa-tocellular carcinoma in hepatitis B virus transgenic mice. Cell. 1989; 59: 1145-1156. https://doi.org/10.1016/0092-8674(89)90770-8.

[117]

Hsieh YH, Su IJ, Wang HC, et al. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carci-nogenesis. 2004; 25:2023-2032. https://doi.org/10.1093/carcin/bgh207.

[118]

Wang HC, Huang W, Lai M, Su IJ. Hepatitis B virus pre-S mutants, endo-plasmic reticulum stress and hepatocarcinogenesis. Cancer Sci. 2006; 97: 683-688. https://doi.org/10.1111/j.1349-7006.2006.00235.x.

[119]

Schlüter V, Meyer M, Hofschneider PH, Koshy R, Caselmann WH. Integrated hepatitis B virus X and 3’ truncated preS/S sequences derived from human hep-atomas encode functionally active transactivators. Oncogene. 1994;9:3335-3344.

[120]

Kekulé AS, Lauer U, Meyer M, Caselmann WH, Hofschneider PH, Koshy R. The pre S2/S region of integrated hepatitis B virus DNA encodes a transcriptional transactivator. Nature. 1990; 343:457-461. https://doi.org/10.1038/343457a0.

[121]

Hildt E, Munz B, Saher G, Reifenberg K, Hofschneider PH.The PreS2 activator MHBs(t) of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice. EMBO J. 2002; 21:525-535. https://doi.org/10.1093/emboj/21.4.525.

[122]

de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A. 1998; 95:8847-8851. https://doi.org/10.1073/pnas.95.15.8847.

[123]

Nault JC, Mallet M, Pilati C, et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun. 2013;4:2218. https://doi.org/10.1038/ncomms3218.

[124]

Hildt E, Saher G, Bruss V, Hofschneider PH. The hepatitis B virus large surface protein (LHBs) is a transcriptional activator. Virology. 1996; 225:235-239. https://doi.org/10.1006/viro.1996.0594.

[125]

Pantazica AM, Dobrica MO, Lazar C, et al. Efficient cellular and humoral immune response and production of virus-neutralizing antibodies by the hepatitis B virus S/preS116- 42 antigen. Front Immunol. 2022;13:941243. https://doi.org/10.3389/fimmu.2022.941243.

[126]

Liang YJ, Teng W, Chen CL, et al. Clinical implications of HBV PreS/S muta-tions and the effects of PreS2 deletion on mitochondria, liver fibrosis, and cancer development. Hepatology. 2021; 74:641-655. https://doi.org/10.1002/hep.31789.

[127]

Li CL, Ho MC, Lin YY, et al. Cell-free virus-host chimera DNA from hepatitis B virus integration sites as a circulating biomarker of hepatocellular cancer. Hepatology. 2020; 72:2063-2076. https://doi.org/10.1002/hep.31230.

[128]

Yeh SH, Li CL, Lin YY, et al. Hepatitis B virus DNA integration drives carci-nogenesis and provides a new biomarker for HBV-related HCC. Cell Mol Gastroenterol Hepatol. 2023; 15:921-929. https://doi.org/10.1016/j.jcmgh.2023.01.001.

[129]

Cappuyns S, Corbett V, Yarchoan M, Finn RS, Llovet JM. Critical appraisal of guideline recommendations on systemic therapies for advanced hepatocel-lular carcinoma: a review. JAMA Oncol. 2024; 10:395-404. https://doi.org/10.1001/jamaoncol.2023.2677.

[130]

Molina-Sánchez P, Ruiz de Galarreta M, Yao MA, et al. Cooperation between distinct cancer driver genes underlies intertumor heterogeneity in hepato-cellular carcinoma. Gastroenterology. 2020;159:2203- 2220 (e14). https://doi.org/10.1053/j.gastro.2020.08.015.

[131]

Wong GLH, Gane E, Lok ASF. How to achieve functional cure of HBV: stopping NUCs, adding interferon or new drug development? J Hepatol. 2022; 76: 1249-1262. https://doi.org/10.1016/j.jhep.2021.11.024.

[132]

Fung S, Choi HSJ, Gehring A, Janssen HLA. Getting to HBV cure: the promising paths forward. Hepatology. 2022; 76:233-250. https://doi.org/10.1002/hep.32314.

[133]

Wang X, He Y, Zhang Q, Ren X, Zhang Z. Direct comparative analyses of 10X genomics chromium and smart-seq2. Genomics Proteomics Bioinformatics. 2021; 19:253-266. https://doi.org/10.1016/j.gpb.2020.02.005.

[134]

Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 2019;179:829- 845 (e20). https://doi.org/10.1016/j.cell.2019.10.003.

PDF (3427KB)

339

Accesses

0

Citation

Detail

Sections
Recommended

/