Revolutionizing medicine: Exploring the breakthroughs in liver xenotransplantation

Mohamed El-Kassas , Walaa Abdelhamed , Khalid Al-Naamani

Liver Research ›› 2025, Vol. 9 ›› Issue (3) : 199 -208.

PDF (11381KB)
Liver Research ›› 2025, Vol. 9 ›› Issue (3) :199 -208. DOI: 10.1016/j.livres.2025.08.001
Review Articles
research-article

Revolutionizing medicine: Exploring the breakthroughs in liver xenotransplantation

Author information +
History +
PDF (11381KB)

Abstract

The critical shortage of liver transplant donors necessitates innovative solutions, with xenotransplantation emerging as a promising alternative. Despite significant ethical, scientific, and practical challenges, recent advancements in liver xenotransplantation, particularly using pigs as donors for non-human primates (NHPs), have extended graft survival duration. However, life-threatening issues such as thrombocytopenia and coagulation disorders persist, limiting survival to under a month. Advances in genetic engineering have enabled the modification of pig genomes to match the human immune system better, targeting genes responsible for immune rejection and increasing compatibility. While these breakthroughs enhance the potential for human transplantation, the challenges of immune rejection and long-term functionality remain substantial. This review highlights recent progress in liver xenotransplantation from pigs to NHPs and explores the implications for potential human clinical application.

Keywords

Liver xenotransplantation / Genetic engineering / Immune rejection / Coagulation dysfunction / Xenogeneic infections

Cite this article

Download citation ▾
Mohamed El-Kassas, Walaa Abdelhamed, Khalid Al-Naamani. Revolutionizing medicine: Exploring the breakthroughs in liver xenotransplantation. Liver Research, 2025, 9(3): 199-208 DOI:10.1016/j.livres.2025.08.001

登录浏览全文

4963

注册一个新账户 忘记密码

Authors’ contributions

Mohamed El-Kassas: Writing - original draft, Writing - review & editing, Supervision, Visualization, Conceptualization. Walaa Abdelhamed: Writing - original draft, Writing - review & editing. Khalid Al-Naamani: Writing - review & editing.

Declaration of competing interest

The authors declare that there is no conflicts of interest.

References

[1]

Samuel D, Coilly A. Management of patients with liver diseases on the waiting list for transplantation: a major impact to the success of liver transplantation. BMC Med. 2018;16:113. https://doi.org/10.1186/s12916-018-1110-y.

[2]

Sundaram V, Jalan R, Wu T, et al. Factors associated with survival of patients with severe acute-on-chronic liver failure before and after liver trans-plantation. Gastroenterology. 2019;156:1381- 1391 (e3). https://doi.org/10.1053/j.gastro.2018.12.007.

[3]

Luo Q, Chen J, Zhang Y, et al. Viral hepatitis E: clinical manifestations, treat-ment, and prevention. Liver Res. 2024; 8:11-21. https://doi.org/10.1016/j.livres.2024.01.001.

[4]

Lima LCD, Miranda AS, Ferreira RN, Rachid MA, Sim-oes E, Silva AC. Hepatic encephalopathy: lessons from preclinical studies. World J Hepatol. 2019; 11: 173-185. https://doi.org/10.4254/wjh.v11.i2.173.

[5]

Mendizabal M, Silva MO. Liver transplantation in acute liver failure: a chal-lenging scenario. World J Gastroenterol. 2016; 22:1523-1531. https://doi.org/10.3748/wjg.v22.i4.1523.

[6]

Liou IW, Larson AM. Role of liver transplantation in acute liver failure. Semin Liver Dis. 2008; 28:201-209. https://doi.org/10.1055/s-2008-1073119.

[7]

Germani G, Theocharidou E, Adam R, et al. Liver transplantation for acute liver failure in Europe: outcomes over 20 years from the ELTR database. J Hepatol. 2012; 57:288-296. https://doi.org/10.1016/j.jhep.2012.03.017.

[8]

Northup PG, Intagliata NM, Shah NL, Pelletier SJ, Berg CL, Argo CK. Excess mortality on the liver transplant waiting list: unintended policy consequences and Model for End-Stage Liver Disease (MELD) inflation. Hepatology. 2015; 61: 285-291. https://doi.org/10.1002/hep.27283.

[9]

Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: a systematic re-view. World J Transplant. 2020; 10:64-78. https://doi.org/10.5500/wjt.v10.i3.64.

[10]

Pagotto VPF, Busnardo FF, Raia SMA, Gemperli R. Advancements in xeno-transplantation: paving the way for revolutionary developments in recon-structive plastic surgery. Acta Cir Bras. 2024;39:e393424. https://doi.org/10.1590/acb393424.

[11]

Cooper DK, Dou KF, Tao KS, Yang ZX, Tector AJ, Ekser B. Pig liver xeno-transplantation: a review of progress toward the clinic. Transplantation. 2016; 100:2039-2047. https://doi.org/10.1097/TP.0000000000001319.

[12]

Gerth HU, Pohlen M, Thölking G, et al. Molecular adsorbent recirculating system (MARS) in acute liver injury and graft dysfunction: results from a case-control study. PLoS One. 2017;12:e0175529. https://doi.org/10.1371/journal. pone.0175529.

[13]

Patel MS, Louras N, Vagefi PA. Liver xenotransplantation. Curr Opin Organ Transplant. 2017; 22:535-540. https://doi.org/10.1097/MOT.0000000000000459.

[14]

Carithers Jr RL. Liver transplantation: will xenotransplantation be the answer to the donor organ shortage? Trans Am Clin Climatol Assoc. 2020;131:270-285.

[15]

Cozzi E, White DJ. The generation of transgenic pigs as potential organ donors for humans. Nat Med. 1995; 1:964-966. https://doi.org/10.1038/nm0995-964.

[16]

Roux FA, Saï P, Deschamps JY. Xenotransfusions, past and present. Xeno-transplantation. 2007; 14:208-216. https://doi.org/10.1111/j.1399-3089.2007.00404.x.

[17]

Gibson T. Zoografting: a curious chapter in the history of plastic surgery. Br J Plast Surg. 1955; 8:234-242. https://doi.org/10.1016/s0007-1226(55)80040-9.

[18]

Rodger D, Hurst DJ. Mathieu Jaboulay’s (1860-1913) contribution to xeno-transplantation. Xenotransplantation. 2022;29:e12765. https://doi.org/10.1111/xen.12765.

[19]

Reemtsma K, Mccracken BH, Schlegel JU, et al. Renal heterotransplantation in man. Ann Surg. 1964; 160:384-410. https://doi.org/10.1097/00000658-196409000-00006.

[20]

Hardy JD, Kurrus FD, Chavez CM, et al. Heart transplantation in man. devel-opmental studies and report of a case. JAMA. 1964;188:1132-1140.

[21]

Bailey LL, Nehlsen-Cannarella SL, Concepcion W, Jolley WB. Baboon-to-human cardiac xenotransplantation in a neonate. JAMA. 1985;254:3321-3329.

[22]

Siems C, Huddleston S, John R. A brief history of xenotransplantation. Ann Thorac Surg. 2022; 113:706-710. https://doi.org/10.1016/j.athoracsur.2022.01.005.

[23]

Starzl TE, Fung J, Tzakis A, et al. Baboon-to-human liver transplantation. Lancet. 1993; 341:65-71. https://doi.org/10.1016/0140-6736(93)92553-6.

[24]

Cooper DK, Gollackner B, Sachs DH. Will the pig solve the transplantation backlog? Annu Rev Med. 2002; 53:133-147. https://doi.org/10.1146/annurev.med.53.082901.103900.

[25]

Calne RY, White HJ, Herbertson BM, et al. Pig-to-baboon liver xenografts. Lancet. 1968; 1:1176-1178. https://doi.org/10.1016/s0140-6736(68)91869-2.

[26]

Calne RY, Davis DR, Pena JR, et al. Hepatic allografts and xenografts in pri-mates. Lancet. 1970; 1:103-106. https://doi.org/10.1016/s0140-6736(70)90462-9.

[27]

Ramirez P, Chavez R, Majado M, et al. Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation. 2000; 70:989-998. https://doi.org/10.1097/00007890-200010150-00001.

[28]

Ramírez P, Montoya MJ, Ríos A, et al. Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using pol-ytransgenic pig livers (CD55, CD59, and H-transferase). Transplant Proc. 2005; 37:4103-4106. https://doi.org/10.1016/j.transproceed.2005.09.186.

[29]

Ekser B, Long C, Echeverri GJ, et al. Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance. Am J Transplant. 2010; 10:273-285. https://doi.org/10.1111/j.1600-6143.2009.02945.x.

[30]

Kim K, Schuetz C, Elias N, et al. Up to 9-day survival and control of throm-bocytopenia following alpha1,3-galactosyl transferase knockout swine liver xenotransplantation in baboons. Xenotransplantation. 2012; 19:256-264. https://doi.org/10.1111/j.1399-3089.2012.00717.x.

[31]

Cowan PJ, Robson SC, d’Apice AJ. Controlling coagulation dysregulation in xenotransplantation. Curr Opin Organ Transplant. 2011; 16:214-221. https://doi.org/10.1097/MOT.0b013e3283446c65.

[32]

Yeh H, Machaidze Z, Wamala I, et al. Increased transfusion-free survival following auxiliary pig liver xenotransplantation. Xenotransplantation. 2014; 21:454-464. https://doi.org/10.1111/xen.12111.

[33]

Ji H, Li X, Yue S, et al. Pig BMSCs transfected with human TFPI combat species incompatibility and regulate the human TF pathway in vitro and in a rodent model. Cell Physiol Biochem. 2015; 36:233-249. https://doi.org/10.1159/000374067.

[34]

Navarro-Alvarez N, Shah JA, Zhu A, et al. The effects of exogenous adminis-tration of human coagulation factors following pig-to-baboon liver xeno-transplantation. Am J Transplant. 2016; 16:1715-1725. https://doi.org/10.1111/ajt.13647.

[35]

Shah JA, Navarro-Alvarez N, DeFazio M, et al. A bridge to somewhere: 25-day survival after pig-to-baboon liver xenotransplantation. Ann Surg. 2016; 263: 1069-1071. https://doi.org/10.1097/SLA.0000000000001659.

[36]

Shah JA, Patel MS, Elias N, et al. Prolonged survival following pig-to-primate liver xenotransplantation utilizing exogenous coagulation factors and cos-timulation blockade. Am J Transplant. 2017; 17:2178-2185. https://doi.org/10.1111/ajt.14341.

[37]

Zhang Z, Li X, Zhang H, et al. Cytokine profiles in Tibetan macaques following α-1,3-galactosyltransferase-knockout pig liver xenotransplantation. Xeno-transplantation. 2017;24:10.1111/xen. 12321. https://doi.org/10.1111/xen.12321.

[38]

Karlsson M, Sjöstedt E, Oksvold P, et al. Genome-wide annotation of protein-coding genes in pig. BMC Biol. 2022;20:25. https://doi.org/10.1186/s12915-022-01229-y.

[39]

Pan Z, Yao Y, Yin H, et al. Pig genome functional annotation enhances the biological interpretation of complex traits and human disease. Nat Commun. 2021;12:5848. https://doi.org/10.1038/s41467-021-26153-7.

[40]

Sun HF, Ernst CW, Yerle M, et al. Human chromosome 3 and pig chromosome 13 show complete synteny conservation but extensive gene-order differences. Cytogenet Cell Genet. 1999; 85:273-278. https://doi.org/10.1159/000015312.

[41]

Makowa L, Cramer DV, Hoffman A, et al. The use of a pig liver xenograft for temporary support of a patient with fulminant hepatic failure. Transplantation. 1995; 59:1654-1659. https://doi.org/10.1097/00007890-199506270-00002.

[42]

Ekser B, Li P, Cooper DKC. Xenotransplantation: past, present, and future. Curr Opin Organ Transplant. 2017; 22:513-521. https://doi.org/10.1097/MOT.0000000000000463.

[43]

Mallapaty S. First pig liver transplanted into a person lasts for 10 days. Nature. 2024; 627:710-711. https://doi.org/10.1038/d41586-024-00853-8.

[44]

Mallapaty S. First pig-to-human liver transplant recipient ‘doing very well’. Nature. 2024;630:18. https://doi.org/10.1038/d41586-024-01613-4.

[45]

Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med. 1997; 3:282-286. https://doi.org/10.1038/nm0397-282.

[46]

Bach FH, Fishman JA, Daniels N, et al. Uncertainty in xenotransplantation: individual benefit versus collective risk. Nat Med. 1998; 4:141-144. https://doi.org/10.1038/nm0298-141.

[47]

Kozlov M. Pig-organ transplants: what three human recipients have taught scientists. Nature. 2024; 629:980-981. https://doi.org/10.1038/d41586-024-01453-2.

[48]

Fishman JA. Risks of infectious disease in xenotransplantation. N Engl J Med. 2022; 387:2258-2267. https://doi.org/10.1056/NEJMra2207462.

[49]

Cooper DKC, Byrne G. Clinical Xenotransplantation:Pathways and Progress in the Transplantation of Organs and Tissues between Species. Switzerland: Springer Nature; 2020.

[50]

Cross-Najafi AA, Lopez K, Isidan A, et al. Current barriers to clinical liver xenotransplantation. Front Immunol. 2022;13:827535. https://doi.org/10.3389/fimmu.2022.827535.

[51]

Cowan PJ. The use of CRISPR/Cas associated technologies for cell transplant applications. Curr Opin Organ Transplant. 2016; 21:461-466. https://doi.org/10.1097/MOT.0000000000000347.

[52]

Yang L, Güell M, Niu D, et al. Genome-wide inactivation of porcine endoge-nous retroviruses (PERVs). Science. 2015; 350:1101-1104. https://doi.org/10.1126/science.aad1191.

[53]

Niu D, Wei HJ, Lin L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017; 357:1303-1307. https://doi.org/10.1126/science.aan4187.

[54]

Fishman JA. Infection in xenotransplantation: opportunities and challenges. Curr Opin Organ Transplant. 2019; 24:527-534. https://doi.org/10.1097/MOT.0000000000000682.

[55]

Miyagawa S, Hirose H, Shirakura R, et al. The mechanism of discordant xenograft rejection. Transplantation. 1988; 46:825-830. https://doi.org/10.1097/00007890-198812000-00007.

[56]

Ali A, Kemter E, Wolf E. Advances in organ and tissue xenotransplantation. Annu Rev Anim Biosci. 2024; 12:369-390. https://doi.org/10.1146/annurev-animal-021122-102606.

[57]

Sykes M, Sachs DH. Transplanting organs from pigs to humans. Sci Immunol. 2019;4:eaau6298. https://doi.org/10.1126/sciimmunol.aau6298.

[58]

Yuan Y, Cui Y, Zhao D, et al. Complement networks in gene-edited pig xen-otransplantation: enhancing transplant success and addressing organ shortage. J Transl Med. 2024;22:324. https://doi.org/10.1186/s12967-024-05136-4.

[59]

Zhou H, Hara H, Cooper DKC. The complex functioning of the complement system in xenotransplantation. Xenotransplantation. 2019;26:e12517. https://doi.org/10.1111/xen.12517.

[60]

Good AH, Cooper DK, Malcolm AJ, et al. Identification of carbohydrate struc-tures that bind human antiporcine antibodies: implications for discordant xenografting in humans. Transplant Proc. 1992;24:559-562.

[61]

Sandrin MS, Vaughan HA, Dabkowski PL, McKenzie IF. Anti-pig IgM antibodies in human serum react predominantly with Gal(alpha 1-3)Gal epitopes. Proc Natl Acad Sci U S A. 1993; 90:11391-11395. https://doi.org/10.1073/pnas.90.23.11391.

[62]

Galili U, Mandrell RE, Hamadeh RM, Shohet SB, Griffiss JM. Interaction be-tween human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun. 1988; 56:1730-1737. https://doi.org/10.1128/iai.56.7.1730-1737.1988.

[63]

Sanz-García C, Fernández-Iglesias A, Gracia-Sancho J, Arráez-Aybar LA, Nevzorova YA, Cubero FJ. The space of disse: the liver hub in health and disease. Livers. 2021; 1:3-26. https://doi.org/10.3390/livers1010002.

[64]

Wu H, Lian M, Lai L. Multiple gene modifications of pigs for overcoming ob-stacles of xenotransplantation. Natl Sci Open. 2023;2:20230030. https://doi.org/10.1360/nso/20230030.

[65]

Xu C, Fang X, Xu X, Wei X. Genetic engineering drives the breakthrough of pig models in liver disease research. Liver Res. 2024; 8:131-140. https://doi.org/10.1016/j.livres.2024.09.003.

[66]

Tseng YL, Moran K, Dor FJ, et al. Elicited antibodies in baboons exposed to tissues from alpha1,3-galactosyltransferase gene-knockout pigs. Trans-plantation. 2006; 81:1058-1062. https://doi.org/10.1097/01.tp.0000197555.16093.98.

[67]

Byrne GW, McCurry KR, Martin MJ, McClellan SM, Platt JL, Logan JS. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage. Transplantation. 1997; 63: 149-155. https://doi.org/10.1097/00007890-199701150-00027.

[68]

Ekser B, Echeverri GJ, Hassett AC, et al. Hepatic function after genetically engineered pig liver transplantation in baboons. Transplantation. 2010; 90: 483-493. https://doi.org/10.1097/TP.0b013e3181e98d51.

[69]

Chihara RK, Paris LL, Reyes LM, et al. Primary porcine Kupffer cell phagocytosis of human platelets involves the CD 18 receptor. Transplantation. 2011; 92: 739-744. https://doi.org/10.1097/TP.0b013e31822bc986.

[70]

Bongoni AK, Kiermeir D, Denoyelle J, et al. Porcine extrahepatic vascular endothelial asialoglycoprotein receptor 1 mediates xenogeneic platelet phagocytosis in vitro and in human-to-pig ex vivo xenoperfusion. Trans-plantation. 2015; 99:693-701. https://doi.org/10.1097/TP.0000000000000553.

[71]

Barclay AN, Brown MH. The SIRP family of receptors and immune regulation. Nat Rev Immunol. 2006; 6:457-464. https://doi.org/10.1038/nri1859.

[72]

Ekser B, Burlak C, Waldman JP, et al. Immunobiology of liver xeno-transplantation. Expert Rev Clin Immunol. 2012; 8:621-634. https://doi.org/10.1586/eci.12.56.

[73]

Burlak C, Wang ZY, Martens G, et al. Xenoreactive antibodies in α-granules of human platelets bind pig liver endothelial cells. Xenotransplantation. 2023;30: e12834. https://doi.org/10.1111/xen.12834.

[74]

Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d’Apice AJ, Cowan PJ. Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant. 2008; 8:1101-1112. https://doi.org/10.1111/j.1600-6143.2008.02210.x.

[75]

Petersen B, Ramackers W, Tiede A, et al. Pigs transgenic for human throm-bomodulin have elevated production of activated protein C. Xeno-transplantation. 2009; 16:486-495. https://doi.org/10.1111/j.1399-3089.2009.00537.x.

[76]

Cooper DKC, Hara H, Iwase H, et al. Justification of specific genetic modifica-tions in pigs for clinical organ xenotransplantation. Xenotransplantation. 2019;26:e12516. https://doi.org/10.1111/xen.12516.

[77]

Singh AK, Chan JL, DiChiacchio L, et al. Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs. Xenotransplantation. 2019;26:e12465. https://doi.org/10.1111/xen.12465.

[78]

Montgomery RA, Stern JM, Lonze BE, et al. Results of two cases of pig-to-human kidney xenotransplantation. N Engl J Med. 2022; 386:1889-1898. https://doi.org/10.1056/NEJMoa2120238.

[79]

Schulte 2nd Am Esch J,Robson SC, Knoefel WT, Hosch SB, Rogiers X. O-linked glycosylation and functional incompatibility of porcine von Willebrand factor for human platelet GPIb receptors. Xenotransplantation. 2005; 12:30-37. https://doi.org/10.1111/j.1399-3089.2004.00187.x.

[80]

Connolly MR, Kuravi K, Burdorf L, et al. Humanized von Willebrand factor reduces platelet sequestration in ex vivo and in vivo xenotransplant models. Xenotransplantation. 2021;28:e12712. https://doi.org/10.1111/xen.12712.

[81]

Zhang X, Li X, Yang Z, et al. A review of pig liver xenotransplantation: current problems and recent progress. Xenotransplantation. 2019;26:e12497. https://doi.org/10.1111/xen.12497.

[82]

Ekser B, Lin CC, Long C, et al. Potential factors influencing the development of thrombocytopenia and consumptive coagulopathy after genetically modified pig liver xenotransplantation. Transpl Int. 2012; 25:882-896. https://doi.org/10.1111/j.1432-2277.2012.01506.x.

[83]

Ahrens HE, Petersen B, Herrmann D, et al. siRNA mediated knockdown of tissue factor expression in pigs for xenotransplantation. Am J Transplant. 2015; 15:1407-1414. https://doi.org/10.1111/ajt.13120.

[84]

Lee KF, Salvaris EJ, Roussel JC, Robson SC, d’Apice AJ, Cowan PJ. Recombinant pig TFPI efficiently regulates human tissue factor pathways. Xeno-transplantation. 2008; 15:191-197. https://doi.org/10.1111/j.1399-3089.2008.00476.x.

[85]

Kopp CW, Grey ST, Siegel JB, et al. Expression of human thrombomodulin cofactor activity in porcine endothelial cells. Transplantation. 1998; 66: 244-251. https://doi.org/10.1097/00007890-199807270-00019.

[86]

Samy KP, Butler JR, Li P, Cooper DKC, Ekser B. The role of costimulation blockade in solid organ and islet xenotransplantation. J Immunol Res. 2017;2017:8415205. https://doi.org/10.1155/2017/8415205.

[87]

Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD 40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016;7:11138. https://doi.org/10.1038/ncomms11138.

[88]

Kim GA, Lee EM, Jin JX, et al. Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs. Transgenic Res. 2017; 26:435-445. https://doi.org/10.1007/s11248-017-0021-6.

[89]

Ekser B, Bianchi J, Ball S, et al. Comparison of hematologic, biochemical, and coagulation parameters in α1,3-galactosyltransferase gene-knockout pigs, wild-type pigs, and four primate species. Xenotransplantation. 2012; 19: 342-354. https://doi.org/10.1111/xen.12007.

[90]

Zhao Y, Cooper DKC, Wang H, et al. Potential pathological role of pro-inflammatory cytokines (IL-6, TNF-α and IL-17) in xenotransplantation. Xen-otransplantation. 2019;26:e12502. https://doi.org/10.1111/xen.12502.

[91]

Iwase H, Liu H, Li T, et al. Therapeutic regulation of systemic inflammation in xenograft recipients. Xenotransplantation. 2017;24:10.1111/xen. 12296. https://doi.org/10.1111/xen.12296.

[92]

Valenzuela NM, Reed EF. Antibody-mediated rejection across solid organ transplants: manifestations, mechanisms, and therapies. J Clin Invest. 2017; 127:2492-2504. https://doi.org/10.1172/JCI90597.

[93]

Mukherjee S, Mukherjee U. A comprehensive review of immunosuppression used for liver transplantation. J Transplant. 2009;2009:701464. https://doi.org/10.1155/2009/701464.

[94]

Agarwal A, Ally W, Brayman K. The future direction and unmet needs of transplant immunosuppression. Expert Rev Clin Pharmacol. 2016; 9:873-876. https://doi.org/10.1080/17512433.2016.1174575.

[95]

Azzi JR, Sayegh MH, Mallat SG. Calcineurin inhibitors: 40 years later, can’t live without. J Immunol. 2013; 191:5785-5791. https://doi.org/10.4049/jimmunol.1390055.

[96]

Schroder PM, Fitch ZW, Schmitz R, Choi AY, Kwun J, Knechtle SJ. The past, present, and future of costimulation blockade in organ transplantation. Curr Opin Organ Transplant. 2019; 24:391-401. https://doi.org/10.1097/MOT.0000000000000656.

[97]

Goerlich CE, Chan JL, Mohiuddin MM. Regulatory barriers to xeno-transplantation. Curr Opin Organ Transplant. 2019; 24:522-526. https://doi.org/10.1097/MOT.0000000000000678.

[98]

Auchincloss Jr H.Report of the food and drug administration subcommittee on xenotransplantation:meeting of 3 and 4 June, 1999, center for Biologics evaluation and research. Xenotransplantation. 1999;6:232-237.

[99]

Bikhet M, Iwase H, Yamamoto T, et al. What therapeutic regimen will be optimal for initial clinical trials of pig organ transplantation? Transplantation. 2021; 105:1143-1155. https://doi.org/10.1097/TP.0000000000003622.

PDF (11381KB)

201

Accesses

0

Citation

Detail

Sections
Recommended

/