Stem cell-based therapeutic strategies for liver aging

Huan Niu , Yan-Nan Wang , Yu Ding , Yu-Qing Lin , Jian Qin , Jian-Cheng Wang

Liver Research ›› 2025, Vol. 9 ›› Issue (2) : 118 -131.

PDF (1272KB)
Liver Research ›› 2025, Vol. 9 ›› Issue (2) :118 -131. DOI: 10.1016/j.livres.2025.04.003
Review article
research-article

Stem cell-based therapeutic strategies for liver aging

Author information +
History +
PDF (1272KB)

Abstract

Aging is characterized by a gradual deterioration of the physiological integrity of cells, tissues, and organs, resulting in a decrease in the body's physiological functions and an acceleration of the onset of age-related diseases, ultimately leading to death. The aging of the liver, which is a critical metabolic organ, is closely linked to various chronic liver diseases, such as hepatitis, liver fibrosis, and cirrhosis, and it exacerbates their prognosis and is a primary risk factor for their development at all stages. Therefore, a comprehensive understanding of the causes, mechanisms, and potential therapeutic targets associated with liver aging holds significant clinical importance for delaying or potentially reversing liver aging and for treating chronic liver diseases. Stem cells, which are potential anti-aging agents, present a promising and effective alternative for managing liver aging. In this review, we systematically assess the driving factors, characteristics, and underlying mechanisms of liver aging. We then discuss the current status of the use of stem cells to mitigate liver senescence and address related liver diseases. The review reveals that a stem cell-based approach represents a promising therapeutic strategy for combating liver aging and associated diseases.

Keywords

Aging / Liver aging / Chronic liver disease / Stem cell / Anti-aging / Anti-liver aging

Cite this article

Download citation ▾
Huan Niu, Yan-Nan Wang, Yu Ding, Yu-Qing Lin, Jian Qin, Jian-Cheng Wang. Stem cell-based therapeutic strategies for liver aging. Liver Research, 2025, 9(2): 118-131 DOI:10.1016/j.livres.2025.04.003

登录浏览全文

4963

注册一个新账户 忘记密码

Authors’ contributions

Huan Niu and Yan-Nan Wang contributed equally to this work and should be considered co-first authors. Huan Niu: Writing e review & editing, Writing e original draft, Software, Investigation. Yan-Nan Wang: Writing e review & editing, Writing e original draft, Software, Investigation. Yu Ding: Writing e original draft, Investigation. Yu-Qing Lin: Software, Investigation. Jian Qin: Writing e review & editing, Validation. Jian-Cheng Wang: Conceptualization, Funding acquisition, Writing e review & edit-ing, Supervision.

Declaration of competing interest

All authors declare that there are no competing interests.

Acknowledgements

This work was supported by Guangdong Basic and Applied Basic Research Foundation of China (2023B1515020016), Fundamental Research Funds for the Central Universities, Sun Yat-sen University (23ykbj003), Research Start-up Fund of The Seventh Affiliated Hospital, Sun Yat-sen University (ZSQYRSSFAR0003), Shenzhen Science and Technology Innovation Commission (SZSTI) Basic Research Program (JCYJ20210324123200001) and Shenzhen Med-ical Research Fund (00201314003). We would also like to thank Mr. Adham Sameer A. Bardeesi for his revisions to the text of the article.

References

[1]

Wang AM, Promislow DEL, Kaeberlein M. Fertile waters for aging research. Cell. 2015;160:814-815. https://doi.org/10.1016/j.cell.2015.02.026.

[2]

López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: an expanding universe. Cell. 2023;186:243-278. https://doi.org/10.1016/j.cell.2022.11.001.

[3]

Hunt NJ, Kang SWS, Lockwood GP, et al. Hallmarks of aging in the liver. Comput Struct Biotechnol J. 2019;17:1151-1161. https://doi.org/10.1016/j.csbj.2019.07.021.

[4]

Morsiani C, Bacalini MG, Santoro A, et al. The peculiar aging of human liver: a geroscience perspective within transplant context. Ageing Res Rev. 2019;51: 24-34. https://doi.org/10.1016/j.arr.2019.02.002.

[5]

Gagliano N, Grizzi F, Annoni G. Mechanisms of aging and liver functions. Dig Dis. 2007;25:118-123. https://doi.org/10.1159/000099475.

[6]

Li X, Li C, Zhang W, et al. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther. 2023;8:239. https://doi.org/10.1038/s41392-023-01502-8.

[7]

Rando TA, Jones DL. Regeneration, rejuvenation, and replacement: turning back the clock on tissue aging. Cold Spring Harb Perspect Biol. 2021;13: a040907. https://doi.org/10.1101/cshperspect.a040907.

[8]

Best DH, Coleman WB. Activation and regulation of reserve liver progenitor cells. Vitam Horm. 2011;87:93e109. https://doi.org/10.1016/b978-0-12-386015-6.00026-3.

[9]

Lanthier N, Rubbia-Brandt L, Spahr L. Liver progenitor cells and therapeutic potential of stem cells in human chronic liver diseases. Acta Gastroenterol Belg. 2013;76:3-9.

[10]

Cheng Y, Wang X, Wang B, et al. Aging-associated oxidative stress inhibits liver progenitor cell activation in mice. Aging (Albany NY). 2017;9:1359-1374. https://doi.org/10.18632/aging.101232.

[11]

Ko S, Russell JO, Molina LM, et al. Liver progenitors and adult cell plasticity in hepatic injury and repair: knowns and unknowns. Annu Rev Pathol. 2020;15: 23-50. https://doi.org/10.1146/annurev-pathmechdis-012419-032824.

[12]

Sameri S, Samadi P, Dehghan R, et al. Stem cell aging in lifespan and disease: a state-of-the-art review. Curr Stem Cell Res Ther. 2020;15:362e378. https://doi.org/10.2174/1574888x15666200213105155.

[13]

Kaur S, Siddiqui H, Bhat MH. Hepatic progenitor cells in action: liver regen-eration or fibrosis? Am J Pathol. 2015;185:2342-2350. https://doi.org/10.1016/j.ajpath.2015.06.004.

[14]

Liu Q, Song S, Song L, et al. Mesenchymal stem cells alleviate aging in vitro and in vivo. Ann Transl Med. 2022;10:1092. https://doi.org/10.21037/atm-22-1206.

[15]

Mitra A, Yan J, Zhang L, et al. A small molecule hedgehog agonist HhAg1.5 mediated reprogramming breaks the quiescence of noninjured liver stem cells for rescuing liver failure. Transl Res. 2019;205:44-50. https://doi.org/10.1016/j.trsl.2018.10.004.

[16]

Dai Z, Song G, Balakrishnan A, et al. Growth differentiation factor 11 atten-uates liver fibrosis via expansion of liver progenitor cells. Gut. 2020;69: 1104-1115. https://doi.org/10.1136/gutjnl-2019-318812.

[17]

Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11-22. https://doi.org/10.1016/j.stem.2015.06.007.

[18]

Wang J, Sun M, Liu W, et al. Stem cell-based therapies for liver diseases: an overview and update. Tissue Eng Regen Med. 2019;16:107-118. https://doi.org/10.1007/s13770-019-00178-y.

[19]

Wáng YXJ. Gender-specific liver aging and magnetic resonance imaging. Quant Imaging Med Surg. 2021;11:2893-2904. https://doi.org/10.21037/qims-21-227.

[20]

Wakabayashi H, Nishiyama Y, Ushiyama T, et al. Evaluation of the effect of age on functioning hepatocyte mass and liver blood flow using liver scintigraphy in preoperative estimations for surgical patients: comparison with ct volu-metry. J Surg Res. 2002;106:246-253. https://doi.org/10.1006/jsre.2002.6462.

[21]

Maeso-Díaz R, Ortega-Ribera M, Fernández-Iglesias A, et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell. 2018;17: e12829. https://doi.org/10.1111/acel.12829.

[22]

Capri M, Olivieri F, Lanzarini C, et al. Identification of mir-31-5p, mir-141-3p, mir-200c-3p, and GLT 1 as human liver aging markers sensitive to donor-recipient age-mismatch in transplants. Aging Cell. 2017;16:262-272. https://doi.org/10.1111/acel.12549.

[23]

Chen M, Wu G, Lu Y, et al. A p21-ATD mouse model for monitoring and eliminating senescent cells and its application in liver regeneration post injury. Mol Ther. 2024;32:2992-3011. https://doi.org/10.1016/j.ymthe.2024.04.002.

[24]

Aravinthan A, Verma S, Coleman N, et al. Vacuolation in hepatocyte nuclei is a marker of senescence. J Clin Pathol. 2012;65:557-560. https://doi.org/10.1136/jclinpath-2011-200641.

[25]

Bacalini MG, Franceschi C, Gentilini D, et al. Molecular aging of human liver: an epigenetic/transcriptomic signature. J Gerontol A Biol Sci Med Sci. 2019;74: 1-8. https://doi.org/10.1093/gerona/gly048.

[26]

Kaeberlein M, Rabinovitch PS, Martin GM. Healthy aging: the ultimate pre-ventative medicine. Science. 2015;350:1191-1193. https://doi.org/10.1126/science.aad3267.

[27]

White RR, Milholland B, MacRae SL, et al. Comprehensive transcriptional landscape of aging mouse liver. BMC Genomics. 2015;16:899. https://doi.org/10.1186/s12864-015-2061-8.

[28]

Song J, Li Z, Zhou L, et al. FOXO-regulated OSER1 reduces oxidative stress and extends lifespan in multiple species. Nat Commun. 2024;15:7144. https://doi.org/10.1038/s41467-024-51542-z.

[29]

Mouchiroud L, Houtkooper RH, Moullan N, et al. The NAD( þ) /sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell. 2013;154:430-441. https://doi.org/10.1016/j.cell.2013.06.016.

[30]

Shalini S, Dorstyn L, Wilson C, et al. Impaired antioxidant defence and accu-mulation of oxidative stress in caspase-2-deficient mice. Cell Death Differ. 2012;19:1370-1380. https://doi.org/10.1038/cdd.2012.13.

[31]

Kim DH, Lee B, Lee J, et al. FoxO6-mediated IL-1b induces hepatic insulin resistance and age-related inflammation via the TF/PAR2 pathway in aging and diabetic mice. Redox Biol. 2019;24:101184. https://doi.org/10.1016/j.redox.2019.101184.

[32]

Bochkis IM, Przybylski D, Chen J, et al. Changes in nucleosome occupancy associated with metabolic alterations in aged mammalian liver. Cell Rep. 2014;9:996e1006. https://doi.org/10.1016/j.celrep.2014.09.048.

[33]

Li N, Muthusamy S, Liang R, et al. Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech Ageing Dev. 2011;132:75-85. https://doi.org/10.1016/j.mad.2010.12.004.

[34]

Anantharaju A, Feller A, Chedid A. Aging liver. A review. Gerontology. 2002;48: 343-353. https://doi.org/10.1159/000065506.

[35]

Schmucker DL. Aging and the liver: an update. J Gerontol A Biol Sci Med Sci. 1998;53:B315eB320. https://doi.org/10.1093/gerona/53a.5.b315.

[36]

Daum B, Walter A, Horst A, et al. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc Natl Acad Sci USA. 2013;110:15301-15306. https://doi.org/10.1073/pnas.1305462110.

[37]

Łysek-Gładysińska M, Wieczorek A, Jóźwik A, et al. Aging-related changes in the ultrastructure of hepatocytes and cardiomyocytes of elderly mice are enhanced in apoe-deficient animals. Cells. 2021; 10. https://doi.org/10.3390/cells10030502.

[38]

Ogrodnik M, Miwa S, Tchkonia T, et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017;8:15691. https://doi.org/10.1038/ncomms15691.

[39]

Martínez G, Duran-Aniotz C, Cabral-Miranda F, et al. Endoplasmic reticulum proteostasis impairment in aging. Aging Cell. 2017;16:615-623. https://doi.org/10.1111/acel.12599.

[40]

Vidal RL, Figueroa A, Court FA, et al. Targeting the UPR transcription factor XBP 1 protects against huntington’s disease through the regulation of FoxO1 and autophagy. Hum Mol Genet. 2012;21:2245-2262. https://doi.org/10.1093/hmg/dds040.

[41]

Dikic I, Elazar Z. Mechanism and medical implications of mammalian auto-phagy. Nat Rev Mol Cell Biol. 2018;19:349-364. https://doi.org/10.1038/s41580-018-0003-4.

[42]

Levine B, Klionsky DJ. Autophagy wins the 2016 Nobel prize in physiology or medicine: breakthroughs in baker’s yeast fuel advances in biomedical research. Proc Natl Acad Sci U S A. 2017;114:201-205. https://doi.org/10.1073/pnas.1619876114.

[43]

Le TV, Truong NH, Holterman AXL. Autophagy modulates physiologic and adaptive response in the liver. Liver Res. 2023;7:304e320. https://doi.org/10.1016/j.livres.2023.12.001.

[44]

Donati A, Cavallini G, Paradiso C, et al. Age-related changes in the regulation of autophagic proteolysis in rat isolated hepatocytes. J Gerontol A Biol Sci Med Sci. 2001;56:B288eB293. https://doi.org/10.1093/gerona/56.7.b288.

[45]

Rajawat YS, Hilioti Z, Bossis I. Aging: central role for autophagy and the lysosomal degradative system. Ageing Res Rev. 2009;8:199-213. https://doi.org/10.1016/j.arr.2009.05.001.

[46]

Schneider JL, Villarroya J, Diaz-Carretero A, et al. Loss of hepatic chaperone-mediated autophagy accelerates proteostasis failure in aging. Aging Cell. 2015;14:249-264. https://doi.org/10.1111/acel.12310.

[47]

Swanlund JM, Kregel KC, Oberley TD. Autophagy following heat stress: the role of aging and protein nitration. Autophagy. 2008;4:936-939. https://doi.org/10.4161/auto.6768.

[48]

Coppé JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p 53 tumor suppressor. PLoS Biol. 2008;6:2853-2868. https://doi.org/10.1371/journal.pbio.0060301.

[49]

Jurk D, Wilson C, Passos JF, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172. https://doi.org/10.1038/ncomms5172.

[50]

Yue Z, Nie L, Zhao P, et al. Senescence-associated secretory phenotype and its impact on oral immune homeostasis. Front Immunol. 2022;13:1019313. https://doi.org/10.3389/fimmu.2022.1019313.

[51]

Irvine KM, Skoien R, Bokil NJ, et al. Senescent human hepatocytes express a unique secretory phenotype and promote macrophage migration. World J Gastroenterol. 2014;20:17851-17862. https://doi.org/10.3748/wjg.v20.i47.17851.

[52]

Huang YH, Chen MH, Guo QL, et al. Interleukin-10 induces senescence of activated hepatic stellate cells via STAT3-p 53 pathway to attenuate liver fibrosis. Cell Signal. 2020;66:109445. https://doi.org/10.1016/j.cellsig.2019.109445.

[53]

Kong X, Feng D, Wang H, et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology. 2012;56: 1150-1159. https://doi.org/10.1002/hep.25744.

[54]

Wan Y, Meng F, Wu N, et al. Substance p increases liver fibrosis by differential changes in senescence of cholangiocytes and hepatic stellate cells. Hepatology. 2017;66:528-541. https://doi.org/10.1002/hep.29138.

[55]

Schnabl B, Purbeck CA, Choi YH, et al. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology. 2003;37:653-664. https://doi.org/10.1053/jhep.2003.50097.

[56]

Kim LB, Putyatina AN, Russkikh GS, et al. Peculiarities of collagen turnover in aging BALB/c mice. Bull Exp Biol Med. 2020;169:100-103. https://doi.org/10.1007/s10517-020-04833-6.

[57]

Martin H, Dean M. An N-terminal peptide from link protein is rapidly degraded by chondrocytes, monocytes and B cells. Eur J Biochem. 1993;212: 87-94. https://doi.org/10.1111/j.1432-1033.1993.tb17636.x.

[58]

Qian L, Zhang H, Gu Y, et al. Reduced production of laminin by hepatic stellate cells contributes to impairment in oval cell response to liver injury in aged mice. Aging (Albany NY). 2018;10:3713-3735. https://doi.org/10.18632/aging.101665.

[59]

Laconi S, Pani P, Pillai S, et al. A growth-constrained environment drives tu-mor progression in vivo. Proc Natl Acad Sci U S A. 2001;98:7806-7811. https://doi.org/10.1073/pnas.131210498.

[60]

Fane M, Weeraratna AT. How the ageing microenvironment influences tumour progression. Nat Rev Cancer. 2020;20:89e106. https://doi.org/10.1038/s41568-019-0222-9.

[61]

Roskams T, De Vos R, Van Eyken P, et al. Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man. J Hepatol. 1998;29:455-463. https://doi.org/10.1016/s0168-8278(98)80065-2.

[62]

Roskams TA, Theise ND, Balabaud C, et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39:1739-1745. https://doi.org/10.1002/hep.20130.

[63]

Markov A, Thangavelu L, Aravindhan S, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther. 2021;12:192. https://doi.org/10.1186/s13287-021-02265-1.

[64]

Raicevic G, Najar M, Najimi M, et al. Influence of inflammation on the immunological profile of adult-derived human liver mesenchymal stromal cells and stellate cells. Cytotherapy. 2015;17:174-185. https://doi.org/10.1016/j.jcyt.2014.10.001.

[65]

Wake K.Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lip-ocytes), their related structure in and around the liver sinusoids, and vitamin a-storing cells in extrahepatic organs. Int Rev Cytol. 1980;66:303-353. https://doi.org/10.1016/s0074-7696(08)61977-4.

[66]

Kordes C, Sawitza I, Götze S, et al. Hepatic stellate cells contribute to pro-genitor cells and liver regeneration. J Clin Invest. 2014;124:5503-5515. https://doi.org/10.1172/jci74119.

[67]

Swiderska-Syn M, Syn WK, Xie G, et al. Myofibroblastic cells function as progenitors to regenerate murine livers after partial hepatectomy. Gut. 2014;63:1333-1344. https://doi.org/10.1136/gutjnl-2013-305962.

[68]

Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964-967. https://doi.org/10.1126/science.275.5302.964.

[69]

Wang L, Wang X, Xie G, et al. Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats. J Clin Invest. 2012;122:1567-1573. https://doi.org/10.1172/jci58789.

[70]

Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433:760-764. https://doi.org/10.1038/nature03260.

[71]

Rohn F, Kordes C, Buschmann T, et al. Impaired integrin a(5)/b(1) -mediated hepatocyte growth factor release by stellate cells of the aged liver. Aging Cell. 2020;19:e13131. https://doi.org/10.1111/acel.13131.

[72]

Jiao X, Fan Z, Chen H, et al. Serum and exosomal miR-122 and miR-199a as a biomarker to predict therapeutic efficacy of hepatitis C patients. J Med Virol. 2017;89:1597-1605. https://doi.org/10.1002/jmv.24829.

[73]

Panikar SS, Banu N, Haramati J, et al. Anti-fouling SERS-based immunosensor for point-of-care detection of the B7-H 6 tumor biomarker in cervical cancer patient serum. Anal Chim Acta. 2020;1138:110-122. https://doi.org/10.1016/j.aca.2020.09.019.

[74]

Patel MC, Shirey KA, Boukhvalova MS, et al. Serum high-mobility-group box 1 as a biomarker and a therapeutic target during respiratory virus infections. mBio. 2018;9. https://doi.org/10.1128/mBio.00246-18.

[75]

Gómez-Santos B, Saenz de Urturi D, Nu-nez-García M, et al. Liver osteopontin is required to prevent the progression of age-related nonalcoholic fatty liver disease. Aging Cell. 2020;19:e13183. https://doi.org/10.1111/acel.13183.

[76]

Sousa-Victor P, Neves J, Cedron-Craft W, et al. Manf regulates metabolic and immune homeostasis in ageing and protects against liver damage. Nat Metab. 2019;1:276-290. https://doi.org/10.1038/s42255-018-0023-6.

[77]

Niemann J, Johne C, Schröder S, et al. An mtDNA mutation accelerates liver aging by interfering with the ROS response and mitochondrial life cycle. Free Radic Biol Med. 2017;102:174-187. https://doi.org/10.1016/j.freeradbiomed.2016.11.035.

[78]

Cherif H, Tarry JL, Ozanne SE, et al. Ageing and telomeres: a study into organ-and gender-specific telomere shortening. Nucleic Acids Res. 2003;31: 1576-1583. https://doi.org/10.1093/nar/gkg208.

[79]

Vougioukalaki M, Demmers J, Vermeij WP, et al. Different responses to DNA damage determine ageing differences between organs. Aging Cell. 2022;21: e13562. https://doi.org/10.1111/acel.13562.

[80]

Gregg SQ, Gutiérrez V, Robinson AR, et al. A mouse model of accelerated liver aging caused by a defect in DNA repair. Hepatology. 2012;55:609-621. https://doi.org/10.1002/hep.24713.

[81]

Aravinthan A, Scarpini C, Tachtatzis P, et al. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J Hepatol. 2013;58: 549-556. https://doi.org/10.1016/j.jhep.2012.10.031.

[82]

Tachtatzis PM, Marshall A, Arvinthan A, et al. Chronic hepatitis B virus infection: the relation between hepatitis B antigen expression, telomere length, senescence, inflammation and fibrosis. PLoS One. 2015;10:e0127511. https://doi.org/10.1371/journal.pone.0127511.

[83]

Campisi J,d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729-740. https://doi.org/10.1038/nrm2233.

[84]

Serra MP, Marongiu F, Sini M, et al. Hepatocyte senescence in vivo following preconditioning for liver repopulation. Hepatology. 2012;56:760-768. https://doi.org/10.1002/hep.25698.

[85]

Yu H, Jiang X, Dong F, et al. Lipid accumulation-induced hepatocyte senes-cence regulates the activation of hepatic stellate cells through the Nrf2-antioxidant response element pathway. Exp Cell Res. 2021;405:112689. https://doi.org/10.1016/j.yexcr.2021.112689.

[86]

Wu R, Wang X, Shao Y, et al. NFATc4 mediates ethanol-triggered hepatocyte senescence. Toxicol Lett. 2021;350:10-21. https://doi.org/10.1016/j.toxlet.2021.06.018.

[87]

Sharma R, Diwan B, Sharma A, et al. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology. 2022;23:699-729. https://doi.org/10.1007/s10522-022-09995-6.

[88]

Yousefzadeh MJ, Flores RR, Zhu Y, et al. An aged immune system drives senescence and ageing of solid organs. Nature. 2021;594:100-105. https://doi.org/10.1038/s41586-021-03547-7.

[89]

Zhang M, Serna-Salas S, Damba T, et al. Hepatic stellate cell senescence in liver fibrosis: characteristics, mechanisms and perspectives. Mech Ageing Dev. 2021;199:111572. https://doi.org/10.1016/j.mad.2021.111572.

[90]

Okamura K, Sato M, Suzuki T, et al. Inorganic arsenic exposure-induced pre-mature senescence and senescence-associated secretory phenotype (SASP) in human hepatic stellate cells. Toxicol Appl Pharmacol. 2022;454:116231. https://doi.org/10.1016/j.taap.2022.116231.

[91]

Zhang Y, Yang G, Huang S, et al. Regulation of Cr (VI)-induced premature senescence in L02 hepatocytes by ROS-Ca(2þ)-NF-kB signaling. Oxid Med Cell Longev. 2022;2022:7295224. https://doi.org/10.1155/2022/7295224.

[92]

Squassina A, Pisanu C, Vanni R. Mood disorders, accelerated aging, and inflammation: is the link hidden in telomeres? Cells. 2019;8:52. https://doi.org/10.3390/cells8010052.

[93]

Zannas AS, Arloth J, Carrillo-Roa T, et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 2015;16:266. https://doi.org/10.1186/s13059-015-0828-5.

[94]

Faraonio R. Oxidative stress and cell senescence process. Antioxidants (Basel). 2022;11:1718. https://doi.org/10.3390/antiox11091718.

[95]

Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239-247. https://doi.org/10.1038/35041687.

[96]

Davalli P, Mitic T, Caporali A, et al. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127. https://doi.org/10.1155/2016/3565127.

[97]

Huda N, Liu G, Hong H, et al. Hepatic senescence, the good and the bad. World J Gastroenterol. 2019;25:5069-5081. https://doi.org/10.3748/wjg.v25.i34.5069.

[98]

Nishizawa H, Iguchi G, Fukuoka H, et al. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner. Sci Rep. 2016;6: 34605. https://doi.org/10.1038/srep34605.

[99]

Pedroza-Diaz J, Arroyave-Ospina JC, Serna Salas S, et al. Modulation of oxidative stress-induced senescence during non-alcoholic fatty liver disease. Antioxidants (Basel). 2022; 11. https://doi.org/10.3390/antiox11050975.

[100]

Luceri C, Bigagli E, Femia AP, et al. Aging related changes in circulating reactive oxygen species (ROS) and protein carbonyls are indicative of liver oxidative injury. Toxicol Rep. 2018;5:141e145. https://doi.org/10.1016/j.toxrep.2017.12.017.

[101]

Dabravolski SA, Bezsonov EE, Orekhov AN. The role of mitochondria dysfunction and hepatic senescence in NAFLD development and progression. Biomed Pharmacother. 2021;142:112041. https://doi.org/10.1016/j.biopha.2021.112041.

[102]

Pole A, Dimri M, Dimri G P. Oxidative stress, cellular senescence and ageing. AIMS Molecular Science. 2016;3:300-324. https://doi.org/10.3934/molsci.2016.3.300.

[103]

Mohammed S, Thadathil N, Selvarani R, et al. Necroptosis contributes to chronic inflammation and fibrosis in aging liver. Aging Cell. 2021;20:e13512. https://doi.org/10.1111/acel.13512.

[104]

Noureddin M, Yates KP, Vaughn IA, et al. Clinical and histological de-terminants of nonalcoholic steatohepatitis and advanced fibrosis in elderly patients. Hepatology. 2013;58:1644-1654. https://doi.org/10.1002/hep.26465.

[105]

Shen W, Wan X, Hou J, et al. Peroxisome proliferator-activated receptor g coactivator 1a maintains NAD(þ) bioavailability protecting against steato-hepatitis. Life Med. 2022;1:207e220. https://doi.org/10.1093/lifemedi/lnac031.

[106]

Zhai L, Pei H, Yang Y, et al. NOX4 promotes Kupffer cell inflammatory response via ROS-NLRP 3 to aggravate liver inflammatory injury in acute liver injury. Aging (Albany NY). 2022;14:6905-6916. https://doi.org/10.18632/aging.204173.

[107]

Kayagaki N, Kornfeld OS, Lee BL, et al. NINJ 1 mediates plasma membrane rupture during lytic cell death. Nature. 2021;591:131-136. https://doi.org/10.1038/s41586-021-03218-7.

[108]

Larrick JW, Larrick JW, Mendelsohn AR. Contribution of ferroptosis to aging and frailty. Rejuvenation Res. 2020;23:434-438. https://doi.org/10.1089/rej.2020.2390.

[109]

Mazhar M, Din AU, Ali H, et al. Implication of ferroptosis in aging. Cell Death Discov. 2021;7:149. https://doi.org/10.1038/s41420-021-00553-6.

[110]

Wood MJ, Gadd VL, Powell LW, et al. Ductular reaction in hereditary hemo-chromatosis: the link between hepatocyte senescence and fibrosis progres-sion. Hepatology. 2014;59:848-857. https://doi.org/10.1002/hep.26706.

[111]

Ghosh TS, Shanahan F, O’Toole PW. The gut microbiome as a modulator of healthy ageing. Nat Rev Gastroenterol Hepatol. 2022;19:565-584. https://doi.org/10.1038/s41575-022-00605-x.

[112]

Haran JP, McCormick BA. Aging, frailty, and the microbiome-how dysbiosis influences human aging and disease. Gastroenterology. 2021;160:507-523. https://doi.org/10.1053/j.gastro.2020.09.060.

[113]

Acharya C, Bajaj JS. Chronic liver diseases and the microbiome-translating our knowledge of gut microbiota to management of chronic liver disease. Gastroenterology. 2021;160:556-572. https://doi.org/10.1053/j.gastro.2020.10.056.

[114]

Yang Y, Zhao Y, Zhang L, et al. The application of mesenchymal stem cells in the treatment of liver diseases: mechanism, efficacy, and safety issues. Front Med (Lausanne). 2021;8:655268. https://doi.org/10.3389/fmed.2021.655268.

[115]

Tsolaki E, Yannaki E. Stem cell-based regenerative opportunities for the liver: state of the art and beyond. World J Gastroenterol. 2015;21:12334-12350. https://doi.org/10.3748/wjg.v21.i43.12334.

[116]

Liu J, Feng B, Xu Y, et al. Immunomodulatory effect of mesenchymal stem cells in chemical-induced liver injury: a high-dimensional analysis. Stem Cell Res Ther. 2019;10:262. https://doi.org/10.1186/s13287-019-1379-6.

[117]

Ock SA, Kim SY, Ju WS, et al. Adipose tissue-derived mesenchymal stem cells extend the lifespan and enhance liver function in hepatocyte organoids. Int J Mol Sci. 2023; 24. https://doi.org/10.3390/ijms242015429.

[118]

Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28:875-884. https://doi.org/10.1016/s0301-472x(00)00482-3.

[119]

Xu Y, Zha H, Chen W, et al. Recovery dynamics of intestinal bacterial com-munities of CCl(4)-treated mice with or without mesenchymal stem cell transplantation over different time points. Biomed Res Int. 2020;2020: 1673602. https://doi.org/10.1155/2020/1673602.

[120]

Yang X, Liang L, Zong C, et al. Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice. Oncotarget. 2016;7:1084e1095. https://doi.org/10.18632/oncotarget.6744.

[121]

Wu Q, He S, Zhu Y, et al. Antiobesity effects of adipose-derived stromal/stem cells in a naturally aged mouse model. Obesity (Silver Spring). 2021;29: 133-142. https://doi.org/10.1002/oby.23036.

[122]

Anwar I, Ashfaq UA, Shokat Z. Therapeutic potential of umbilical cord stem cells for liver regeneration. Curr Stem Cell Res Ther. 2020;15:219-232. https://doi.org/10.2174/1568026620666200220122536.

[123]

Yan Y, Jiang W, Tan Y, et al. hucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury. Mol Ther. 2017;25:465-479. https://doi.org/10.1016/j.ymthe.2016.11.019.

[124]

Ling M, Tang C, Yang X, et al. Integrated metabolomics and phosphoproteo-mics reveal the protective role of exosomes from human umbilical cord mesenchymal stem cells in naturally aging mouse livers. Exp Cell Res. 2023;427:113566. https://doi.org/10.1016/j.yexcr.2023.113566.

[125]

Zhang J, Lu T, Xiao J, et al. MSC-derived extracellular vesicles as nano-therapeutics for promoting aged liver regeneration. J Control Release. 2023;356:402-415. https://doi.org/10.1016/j.jconrel.2023.02.032.

[126]

Meng Y, Li C, Liang Y, et al. Umbilical cord mesenchymal-stem-cell-derived exosomes exhibit anti-oxidant and antiviral effects as cell-free therapies. Vi-ruses. 2023; 15. https://doi.org/10.3390/v15102094.

[127]

Xing C, Hang Z, Guo W, et al. Stem cells from human exfoliated deciduous teeth rejuvenate the liver in naturally aged mice by improving ribosomal and mitochondrial proteins. Cytotherapy. 2023;25:1285-1292. https://doi.org/10.1016/j.jcyt.2023.08.015.

[128]

Nevens F,van der Merwe S. Mesenchymal stem cell transplantation in liver diseases. Semin Liver Dis. 2022;42:283-292. https://doi.org/10.1055/s-0042-1755328.

[129]

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126: 663-676. https://doi.org/10.1016/j.cell.2006.07.024.

[130]

Isobe K, Cheng Z, Nishio N, et al. iPSCs aging and age-related diseases. N Biotechnol. 2014;31:411-421. https://doi.org/10.1016/j.nbt.2014.04.004.

[131]

Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26:101e106. https://doi.org/10.1038/nbt1374.

[132]

Lapasset L, Milhavet O, Prieur A, et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 2011;25:2248-2253. https://doi.org/10.1101/gad.173922.111.

[133]

Yarygin KN, Lupatov AY, Kholodenko IV. Cell-based therapies of liver diseases: age-related challenges. Clin Interv Aging. 2015;10:1909-1924. https://doi.org/10.2147/cia.S97926.

[134]

Yang J, Wang Y, Zhou T, et al. Generation of human liver chimeric mice with he-patocytes from familial hypercholesterolemia induced pluripotent stem cells. Stem Cell Reports. 2017;8:605e618. https://doi.org/10.1016/j.stemcr.2017.01.027.

[135]

Luo Q, Wang N, Que H, et al. Pluripotent stem cell-derived hepatocyte-like cells: induction methods and applications. Int J Mol Sci. 2023; 24. https://doi.org/10.3390/ijms241411592.

[136]

Sampaziotis F, Segeritz CP, Vallier L. Potential of human induced pluripotent stem cells in studies of liver disease. Hepatology. 2015;62:303-311. https://doi.org/10.1002/hep.27651.

[137]

Carraro A, Flaibani M, Cillo U, et al. A combining method to enhance the in vitro differentiation of hepatic precursor cells. Tissue Eng Part C Methods. 2010;16:1543-1551. https://doi.org/10.1089/ten.TEC.2009.0795.

[138]

Takase HM, Itoh T, Ino S, et al. FGF 7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev. 2013;27:169-181. https://doi.org/10.1101/gad.204776.112.

[139]

Sandhu JS, Petkov PM, Dabeva MD, et al. Stem cell properties and repopula-tion of the rat liver by fetal liver epithelial progenitor cells. Am J Pathol. 2001;159:1323-1334. https://doi.org/10.1016/s0002-9440(10)62519-9.

[140]

Oertel M, Menthena A, Chen YQ, et al. Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver. Gastro-enterology. 2008;134:823-832. https://doi.org/10.1053/j.gastro.2008.01.007.

[141]

Irudayaswamy A, Muthiah M, Zhou L, et al. Long-term fate of human fetal liver progenitor cells transplanted in injured mouse livers. Stem Cell. 2018;36: 103-113. https://doi.org/10.1002/stem.2710.

[142]

Wang X, Foster M, Al-Dhalimy M, et al. The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci U S A. 2003; 100(Suppl 1): 11881e11888. https://doi.org/10.1073/pnas.1734199100.

[143]

Fan J, An X, Yang Y, et al. MiR-1292 targets FZD 4 to regulate senescence and osteogenic differentiation of stem cells in TE/SJ/mesenchymal tissue system via the wnt/b-catenin pathway. Aging Dis. 2018;9:1103-1121. https://doi.org/10.14336/ad.2018.1110.

[144]

Shetty AK, Kodali M, Upadhya R, et al. Emerging anti-aging strategies-scien-tific basis and efficacy. Aging Dis. 2018;9:1165-1184. https://doi.org/10.14336/ad.2018.1026.

[145]

Mair W, Dillin A. Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem. 2008;77:727-754. https://doi.org/10.1146/annurev.biochem.77.061206.171059.

[146]

Smith HJ, Sharma A, Mair WB. Metabolic communication and healthy aging: where should we focus our energy? Dev Cell. 2020;54:196-211. https://doi.org/10.1016/j.devcel.2020.06.011.

[147]

Novak JSS, Baksh SC, Fuchs E. Dietary interventions as regulators of stem cell behavior in homeostasis and disease. Genes Dev. 2021;35:199-211. https://doi.org/10.1101/gad.346973.120.

[148]

Regan JC, Khericha M, Dobson AJ, et al. Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary re-striction. Elife. 2016;5:e10956. https://doi.org/10.7554/eLife.10956.

[149]

Tang D, Tao S, Chen Z, et al. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging. J Exp Med. 2016;213:535-553. https://doi.org/10.1084/jem.20151100.

[150]

Chen YL, Ma YC, Tang J, et al. Physical exercise attenuates age-related muscle atrophy and exhibits anti-ageing effects via the adiponectin receptor 1sig-nalling. J Cachexia Sarcopenia Muscle. 2023;14:1789-1801. https://doi.org/10.1002/jcsm.13257.

[151]

Fang EF, Xie C, Schenkel JA, et al. A research agenda for ageing in China in the 21st century (2nd edition): focusing on basic and translational research, long-term care, policy and social networks. Ageing Res Rev. 2020;64:101174. https://doi.org/10.1016/j.arr.2020.101174.

[152]

Furrer R, Handschin C. Drugs, clocks and exercise in ageing: hype and hope, fact and fiction. J Physiol. 2023;601:2057-2068. https://doi.org/10.1113/jp282887.

[153]

Landers-Ramos RQ, Sapp RM, Shill DD, et al. Exercise and cardiovascular progenitor cells. Compr Physiol. 2019;9:767-797. https://doi.org/10.1002/cphy.c180030.

[154]

Pagnotti GM, Styner M, Uzer G, et al. Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat Rev Endocrinol. 2019;15:339-355. https://doi.org/10.1038/s41574-019-0170-1.

[155]

Zhou Q, Deng J, Yao J, et al. Exercise downregulates HIPK2 and HIPK 2 inhi-bition protects against myocardial infarction. EBioMedicine. 2021;74:103713. https://doi.org/10.1016/j.ebiom.2021.103713.

[156]

Liu L, Kim S, Buckley MT, et al. Exercise reprograms the inflammatory land-scape of multiple stem cell compartments during mammalian aging. Cell Stem Cell. 2023; 30:689e705(e684). https://doi.org/10.1016/j.stem.2023.03.016.

[157]

Brett JO, Arjona M, Ikeda M, et al. Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of cyclin D1. Nat Metab. 2020;2:307-317. https://doi.org/10.1038/s42255-020-0190-0.

[158]

Cheng R, Wang L, Le S, et al. A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease. Nat Commun. 2022;13:2555. https://doi.org/10.1038/s41467-022-29968-0.

[159]

Younossi ZM, Corey KE, Lim JK. AGA clinical practice update on lifestyle modification using diet and exercise to achieve weight loss in the manage-ment of nonalcoholic fatty liver disease: expert review. Gastroenterology. 2021;160:912-918. https://doi.org/10.1053/j.gastro.2020.11.051.

[160]

Zhang HJ, He J, Pan LL, et al. Effects of moderate and vigorous exercise on nonalcoholic fatty liver disease: a randomized clinical trial. JAMA Intern Med. 2016;176:1074-1082. https://doi.org/10.1001/jamainternmed.2016.3202.

[161]

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148:46-57. https://doi.org/10.1016/j.cell.2012.01.003.

[162]

Sarkar TJ, Quarta M, Mukherjee S, et al. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat Commun. 2020;11:1545. https://doi.org/10.1038/s41467-020-15174-3.

[163]

Chondronasiou D, Gill D, Mosteiro L, et al. Multi-omic rejuvenation of natu-rally aged tissues by a single cycle of transient reprogramming. Aging Cell. 2022;21:e13578. https://doi.org/10.1111/acel.13578.

[164]

Ho TC, Wang EY, Yeh KH, et al. Complement C1q mediates the expansion of periportal hepatic progenitor cells in senescence-associated inflammatory liver. Proc Natl Acad Sci U S A. 2020;117:6717-6725. https://doi.org/10.1073/pnas.1918028117.

[165]

Knight B, Matthews VB, Olynyk JK, et al. Jekyll and hyde: evolving perspec-tives on the function and potential of the adult liver progenitor (oval) cell. Bioessays. 2005;27:1192-1202. https://doi.org/10.1002/bies.20311.

[166]

Kordes C, Bock HH, Reichert D, et al. Hepatic stellate cells: current state and open questions. Biol Chem. 2021;402:1021-1032. https://doi.org/10.1515/hsz-2021-0180.

[167]

Asahina K. Hepatic stellate cell progenitor cells. J Gastroenterol Hepatol. 2012; 27(Suppl 2):80e84. https://doi.org/10.1111/j.1440-1746.2011.07001.x.

[168]

Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32:252-260. https://doi.org/10.1038/nbt.2816.

[169]

de Witte SFH, Lambert EE, Merino A, et al. Aging of bone marrow- and um-bilical cord-derived mesenchymal stromal cells during expansion. Cytother-apy. 2017;19:798-807. https://doi.org/10.1016/j.jcyt.2017.03.071.

[170]

Bian D, Wu Y, Song G, et al. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther. 2022;13:24. https://doi.org/10.1186/s13287-021-02697-9.

[171]

Choi W, Kwon SJ, Jin HJ, et al. Optimization of culture conditions for rapid clinical-scale expansion of human umbilical cord blood-derived mesenchymal stem cells. Clin Transl Med. 2017;6:38. https://doi.org/10.1186/s40169-017-0168-z.

[172]

Zhang Y, Li Y, Zhang L, et al. Mesenchymal stem cells: potential application for the treatment of hepatic cirrhosis. Stem Cell Res Ther. 2018;9:59. https://doi.org/10.1186/s13287-018-0814-4.

[173]

Al-Azab M, Safi M, Idiiatullina E, et al. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett. 2022;27:69. https://doi.org/10.1186/s11658-022-00366-0.

[174]

Petrenko Y, Syková E, Kubinová Š. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Res Ther. 2017;8:94. https://doi.org/10.1186/s13287-017-0558-6.

[175]

Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: dietary macronutrients and cellular senescence. Cell Metab. 2024;36:1914-1944. https://doi.org/10.1016/j.cmet.2024.07.025.

[176]

Yang C, Xia S, Zhang W, et al. Modulation of Atg genes expression in aged rat liver, brain, and kidney by caloric restriction analyzed via single-nucleus/cell RNA sequencing. Autophagy. 2023;19:706e715. https://doi.org/10.1080/15548627.2022.2091903.

[177]

Du Y, Gao Y, Zeng B, et al. Effects of anti-aging interventions on intestinal microbiota. Gut Microbes. 2021;13:1994835. https://doi.org/10.1080/19490976.2021.1994835.

PDF (1272KB)

84

Accesses

0

Citation

Detail

Sections
Recommended

/