Bioengineered extracellular vesicles: The path to precision medicine in liver diseases

Ashmit Mittal , Vibhuti R Jakhmola , Sukriti Baweja

Liver Research ›› 2025, Vol. 9 ›› Issue (1) : 17 -28.

PDF (3321KB)
Liver Research ›› 2025, Vol. 9 ›› Issue (1) :17 -28. DOI: 10.1016/j.livres.2025.02.002
Review Articles
research-article

Bioengineered extracellular vesicles: The path to precision medicine in liver diseases

Author information +
History +
PDF (3321KB)

Abstract

Extracellular vesicles (EVs) are membrane-bound entities secreted by each cell, categorized as, exosomes, microvesicles or apoptotic bodies based on their size and biogenesis. They serve as promising vectors for drug delivery due to their capacity to carry diverse molecular signatures reflective of their cell of origin. EV research has significantly advanced since their serendipitous discovery, with recent studies focusing on their roles in various diseases and their potential for targeted therapy. In liver diseases, EVs are particularly promising for precision medicine, providing diagnostic and therapeutic potential in conditions such as metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, hepatocellular carcinoma, alcoholic liver disease, liver fibrosis, and acute liver failure. Despite challenges in isolation and characterization, engineered EVs have shown efficacy in delivering therapeutic agents with improved targeting and reduced side effects. As research progresses, EVs hold great promise to revolutionize precision medicine in liver diseases, offering targeted, efficient, and versatile therapeutic options. In this review, we summarize various techniques for loading EVs with therapeutic cargo including both passive and active methods, and the potential of bioengineered EVs loaded with various molecules, such as miRNAs, proteins, and anti-inflammatory drugs in ameliorating clinical pathologies of liver diseases.

Keywords

Extracellular vesicles (EVs) / Microvesicles / Exosomes / Drug delivery / Bioengineering / Therapeutic agents / Liver diseases / Precision medicine

Cite this article

Download citation ▾
Ashmit Mittal, Vibhuti R Jakhmola, Sukriti Baweja. Bioengineered extracellular vesicles: The path to precision medicine in liver diseases. Liver Research, 2025, 9(1): 17-28 DOI:10.1016/j.livres.2025.02.002

登录浏览全文

4963

注册一个新账户 忘记密码

Authors’ contributions

Ashmit Mittal: Writing e original draft, Resources, Formal analysis, Conceptualization. Vibhuti R Jakhmola: Writing e orig-inal draft, Resources, Formal analysis, Conceptualization. Sukriti Baweja: Writing e review & editing, Conceptualization.

Declaration of competing interest

The authors declare that there is no conflict of interest.

Acknowledgements

This work did not receive any financial grant.

References

[1]

Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, compo-sition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8:727. https://doi.org/10.3390/cells8070727.

[2]

Goo J, Lee Y, Lee J, Kim IS, Jeong C. Extracellular vesicles in therapeutics: a comprehensive review on applications, challenges, and clinical progress. Phar-maceutics. 2024;16:311. https://doi.org/10.3390/pharmaceutics16030311.

[3]

Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166:189-197.

[4]

Couch Y, Buzás EI, Di Vizio D, et al. A brief history of nearly EV-erything - the rise and rise of extracellular vesicles. J Extracell Vesicles. 2021;10:e12144. https://doi.org/10.1002/jev2.12144.

[5]

Parfejevs V, Sagini K, Buss A, et al. Adult stem cell-derived extracellular ves-icles in cancer treatment: opportunities and challenges. Cells. 2020;9:1171. https://doi.org/10.3390/cells9051171.

[6]

Xie X, Wu H, Li M, et al. Progress in the application of exosomes as therapeutic vectors in tumor-targeted therapy. Cytotherapy. 2019;21:509-524. https://doi.org/10.1016/j.jcyt.2019.01.001.

[7]

Kean TJ, Duesler L, Young RG, et al. Development of a peptide-targeted, myocardial ischemia-homing, mesenchymal stem cell. J Drug Target. 2012;20:23-32. https://doi.org/10.3109/1061186X.2011.622398.

[8]

Antes TJ, Middleton RC, Luther KM, et al. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J Nanobiotechnology. 2018;16:61. https://doi.org/10.1186/s12951-018-0388-4.

[9]

Esmaeili A, Alini M, Baghaban Eslaminejad M, Hosseini S. Engineering strategies for customizing extracellular vesicle uptake in a therapeutic context. Stem Cell Res Ther. 2022;13:129. https://doi.org/10.1186/s13287-022-02806-2.

[10]

Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3:10.3402/jev.v3.24641. https://doi.org/10.3402/jev.v3.24641.

[11]

Du S, Guan Y, Xie A, et al. Extracellular vesicles: a rising star for therapeutics and drug delivery. J Nanobiotechnology. 2023;21:231. https://doi.org/10.1186/s12951-023-01973-5.

[12]

Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol. 2009;10:597-608. https://doi.org/10.1038/nrm2755.

[13]

Woodman PG, Futter CE. Multivesicular bodies: co-ordinated progression to maturity. Curr Opin Cell Biol. 2008;20:408-414. https://doi.org/10.1016/J.CEB.2008.04.001.

[14]

Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006;107:102-108. https://doi.org/10.1016/j.imlet.2006.09.005.

[15]

Sönnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol. 2000;149:901-914. https://doi.org/10.1083/jcb.149.4.901.

[16]

Megha London E. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem. 2004;279:9997-10004. https://doi.org/10.1074/jbc.M309992200.

[17]

Gruenberg J, Stenmark H. The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol. 2004;5:317-323. https://doi.org/10.1038/nrm1360.

[18]

van Niel G, Charrin S, Simoes S, et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell. 2011;21:708-721. https://doi.org/10.1016/j.devcel.2011.08.019.

[19]

Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2017;75:193-208. https://doi.org/10.1007/s00018-017-2595-9.

[20]

Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513-525. https://doi.org/10.1038/nrm2728.

[21]

Bröcker C, Engelbrecht-Vandré S, Ungermann C. Multisubunit tethering complexes and their role in membrane fusion. Curr Biol. 2010;20:R943eR952. https://doi.org/10.1016/j.cub.2010.09.015.

[22]

Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006; Chapter3. https://doi.org/10.1002/0471143030.cb0322s30.

[23]

Amin S, Massoumi H, Tewari D, et al. Cell type-specific extracellular vesicles and their impact on health and disease. Int J Mol Sci. 2024;25:2730. https://doi.org/10.3390/ijms25052730.

[24]

Hu YB, Dammer EB, Ren RJ, Wang G. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegener. 2015; 4:18. https://doi.org/10.1186/s40035-015-0041-1.

[25]

Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19:47. https://doi.org/10.1186/s12964-021-00730-1.

[26]

Boilard E. Extracellular vesicles and their content in bioactive lipid mediators: more than a sack of microRNA. J Lipid Res. 2018;59:2037-2046. https://doi.org/10.1194/jlr.r084640.

[27]

Skogberg G, Lundberg V, Berglund M, et al. Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol Cell Biol. 2015;93:727-734. https://doi.org/10.1038/icb.2015.33.

[28]

Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol. 2023;23:236-250. https://doi.org/10.1038/s41577-022-00763-8.

[29]

Duchez AC, Boudreau LH, Naika GS, et al. Platelet microparticles are inter-nalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A 2-IIA. Proc Natl Acad Sci U S A. 2015;112: E3564eE3573. https://doi.org/10.1073/pnas.1507905112.

[30]

Burgelman M, Vandendriessche C, Vandenbroucke RE. Extracellular vesicles: a double-edged sword in sepsis. Pharmaceuticals (Basel). 2021;14:829. https://doi.org/10.3390/ph14080829.

[31]

Donate PB, Lamarre Y, Pino-Lagos K, Noël D, Almeida F. Editorial: extracellular vesicles as immunomodulatory mediators in inflammatory processes. Front Immunol. 2022;13:867324. https://doi.org/10.3389/fimmu.2022.867324.

[32]

Tu F, Wang X, Zhang X, et al. Novel role of endothelial derived exosomal HSPA12B in regulating macrophage inflammatory responses in polymicrobial sepsis. Front Immunol. 2020;11:825. https://doi.org/10.3389/fimmu.2020.00825.

[33]

Stronati E, Conti R, Cacci E, Cardarelli S, Biagioni S, Poiana G. Extracellular vesicle-induced differentiation of neural stem progenitor cells. Int J Mol Sci. 2019;20:3691. https://doi.org/10.3390/ijms20153691.

[34]

Kranendonk ME, Visseren FL, van Balkom BW, et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macro-phages. Obesity (Silver Spring). 2014;22:1296-1308. https://doi.org/10.1002/oby.20679.

[35]

Gesmundo I, Pardini B, Gargantini E, et al. Adipocyte-derived extracellular vesicles regulate survival and function of pancreatic b cells. JCI Insight. 2021;6: e141962. https://doi.org/10.1172/jci.insight.141962.

[36]

Zhou X, Li Z, Qi M, et al. Brown adipose tissue-derived exosomes mitigate the metabolic syndrome in high fat diet mice. Theranostics. 2020;10:8197-8210. https://doi.org/10.7150/thno.43968.

[37]

Liu W, Liu T, Zhao Q, Ma J, Jiang J, Shi H. Adipose tissue-derived extracellular vesicles: a promising biomarker and therapeutic strategy for metabolic dis-orders. Stem Cells Int. 2023;2023:9517826. https://doi.org/10.1155/2023/9517826.

[38]

Hu T, Hu J. Melanoma-derived exosomes induce reprogramming fibroblasts into cancer-associated fibroblasts via Gm26809 delivery. Cell Cycle. 2019;18: 3085-3094. https://doi.org/10.1080/15384101.2019.1669380.

[39]

Tauro BJ, Mathias RA, Greening DW, et al. Oncogenic H-ras reprograms madin-darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Mol Cell Proteomics. 2013;12:2148-2159. https://doi.org/10.1074/mcp.M112.027086.

[40]

Li Z, Liu F, He X, Yang X, Shan F, Feng J. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int Immuno-pharmacol. 2019;67:268-280. https://doi.org/10.1016/j.intimp.2018.12.001.

[41]

Barberis E, Vanella VV, Falasca M, et al. Circulating exosomes are strongly involved in SARS-CoV-2 infection. Front Mol Biosci. 2021;8:632290. https://doi.org/10.3389/fmolb.2021.632290.

[42]

Fu S, Zhang Y, Li Y, Luo L, Zhao Y, Yao Y. Extracellular vesicles in cardiovas-cular diseases. Cell Death Discov. 2020;6:68. https://doi.org/10.1038/s41420-020-00305-y.

[43]

Breyne K, Ughetto S, Rufino-Ramos D, et al. Exogenous loading of extracellular vesicles, virus-like particles, and lentiviral vectors with supercharged pro-teins. Commun Biol. 2022;5:485. https://doi.org/10.1038/s42003-022-03440-7.

[44]

Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 2016;12: 655-664. https://doi.org/10.1016/j.nano.2015.10.012.

[45]

Familtseva A, Jeremic N, Tyagi SC. Exosomes: cell-created drug delivery sys-tems. Mol Cell Biochem. 2019;459:1-6. https://doi.org/10.1007/s11010-019-03545-4.

[46]

Villata S, Canta M, Cauda V. EVs and bioengineering: from cellular products to engineered nanomachines. Int J Mol Sci. 2020;21:6048. https://doi.org/10.3390/ijms21176048.

[47]

Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered extracellular vesicles as a reliable tool in cancer nanomedicine. Cancers (Basel). 2019;11: 1979. https://doi.org/10.3390/cancers11121979.

[48]

Wu YW, Huang CC, Changou CA, Lu LS, Goubran H, Burnouf T. Clinical-grade cryopreserved doxorubicin-loaded platelets: role of cancer cells and platelet extracellular vesicles activation loop. J Biomed Sci. 2020;27:45. https://doi.org/10.1186/s12929-020-00633-2.

[49]

Ingato D, Edson JA, Zakharian M, Kwon YJ. Cancer cell-derived, drug-loaded nanovesicles induced by sulfhydryl-blocking for effective and safe cancer therapy. ACS Nano. 2018;12:9568-9577. https://doi.org/10.1021/acsnano.8b05377.

[50]

Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18:1606-1614. https://doi.org/10.1038/mt.2010.105.

[51]

Jamur MC, Oliver C. Permeabilization of cell membranes. Methods Mol Biol. 2010;588:63-66. https://doi.org/10.1007/978-1-59745-324-0_9.

[52]

Goh WJ, Lee CK, Zou S, Woon EC, Czarny B, Pastorin G. Doxorubicin-loaded cell-derived nanovesicles: an alternative targeted approach for anti-tumor therapy. Int J Nanomedicine. 2017;12:2759-2767. https://doi.org/10.2147/IJN.S131786.

[53]

Jeyaram A, Lamichhane TN, Wang S, et al. Enhanced loading of functional miRNA cargo via pH gradient modification of extracellular vesicles. Mol Ther. 2020;28:975-985. https://doi.org/10.1016/j.ymthe.2019.12.007.

[54]

Qi H, Liu C, Long L, et al. Blood exosomes endowed with magnetic and tar-geting properties for cancer therapy. ACS Nano. 2016;10:3323-3333. https://doi.org/10.1021/acsnano.5b06939.

[55]

Zhang W, Yu ZL, Wu M, et al. Magnetic and folate functionalization enables rapid isolation and enhanced tumor-targeting of cell-derived microvesicles. ACS Nano. 2017;11:277-290. https://doi.org/10.1021/acsnano.6b05630.

[56]

Srivastava A, Amreddy N, Babu A, et al. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep. 2016;6:38541. https://doi.org/10.1038/srep38541.

[57]

Ding L, Zhou W, Zhang J, et al. Calming egress of inflammatory monocytes and related septic shock by therapeutic CCR2 silencing using macrophage-derived extracellular vesicles. Nanoscale. 2022;14:4935-4945. https://doi.org/10.1039/d1nr06922e.

[58]

Gao J, Wang S, Wang Z. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation ther-apy. Biomaterials. 2017;135:62-73. https://doi.org/10.1016/j.biomaterials.2017.05.003.

[59]

Peng LY, Yuan M, Shi HT, et al. Protective effect of piceatannol against acute lung injury through protecting the integrity of air-blood barrier and modu-lating the TLR4/NF-kB signaling pathway activation. Front Pharmacol. 2020;10:1613. https://doi.org/10.3389/fphar.2019.01613.

[60]

Han Y, Jones TW, Dutta S, et al. Overview and update on methods for cargo loading into extracellular vesicles. Processes (Basel). 2021;9:356. https://doi.org/10.3390/pr9020356.

[61]

Zhang D, Lee H, Jin Y. Delivery of functional small RNAs via extracellular vesicles in vitro and in vivo. Methods Mol Biol. 2020;2115:107-117. https://doi.org/10.1007/978-1-0716-0290-4_6.

[62]

Zhang H, Wu J, Wu J, et al. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J Nanobiotechnology. 2019;17:29. https://doi.org/10.1186/s12951-019-0461-7.

[63]

Kamerkar S, LeBleu VS, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546:498-503. https://doi.org/10.1038/nature22341.

[64]

Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341-345. https://doi.org/10.1038/nbt.1807.

[65]

Banizs AB, Huang T, Dryden K, et al. In vitro evaluation of endothelial exo-somes as carriers for small interfering ribonucleic acid delivery. Int J Nano-medicine. 2014;9:4223-4230. https://doi.org/10.2147/IJN.S64267.

[66]

Greco KA, Franzen CA, Foreman KE, Flanigan RC, Kuo PC, Gupta GN. PLK-1 silencing in bladder cancer by siRNA delivered with exosomes. Urology. 2016;91:241. https://doi.org/10.1016/j.urology.2016.01.028.

[67]

Wang Y, Chen X, Tian B, et al. Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics. 2017;7: 1360-1372. https://doi.org/10.7150/thno.16532.

[68]

Limoni SK, Moghadam MF, Moazzeni SM, Gomari H, Salimi F. Engineered exosomes for targeted transfer of siRNA to HER2 positive breast cancer cells. Appl Biochem Biotechnol. 2019;187:352-364. https://doi.org/10.1007/s12010-018-2813-4.

[69]

Kim M, Kim G, Hwang DW, Lee M. Delivery of high mobility group box-1 siRNA using brain-targeting exosomes for ischemic stroke therapy. J Biomed Nanotechnol. 2019;15:2401-2412. https://doi.org/10.1166/jbn.2019.2866.

[70]

Cooper JM, Wiklander PBO, Nordin JZ, et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord. 2014;29:1476-1485. https://doi.org/10.1002/mds.25978.

[71]

Liu Y, Li D, Liu Z, et al. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep. 2015;5:17543. https://doi.org/10.1038/srep17543.

[72]

Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016;371:48-61. https://doi.org/10.1016/j.canlet.2015.10.020.

[73]

Haney MJ, Klyachko NL, Harrison EB, Zhao Y, Kabanov AV, Batrakova EV. TPP 1 delivery to lysosomes with extracellular vesicles and their enhanced brain distribution in the animal model of batten disease. Adv Healthc Mater. 2019;8:e1801271. https://doi.org/10.1002/adhm.201801271.

[74]

Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharm. 2015;12:3650-3657. https://doi.org/10.1021/acs.molpharmaceut.5b00364.

[75]

Kao CY, Papoutsakis ET. Engineering human megakaryocytic microparticles for targeted delivery of nucleic acids to hematopoietic stem and progenitor cells. Sci Adv. 2018;4:eaau6762. https://doi.org/10.1126/sciadv.aau6762.

[76]

Han Y, Jones TW, Dutta S, et al. Overview and update on methods for cargo loading into extracellular vesicles. Processes (Basel). 2021;9:356. https://doi.org/10.3390/pr9020356.

[77]

Zhu T, Xiao Y, Meng X, et al. Nanovesicles derived from bispecific CAR-T cells targeting the spike protein of SARS-CoV-2 for treating COVID-19. J Nanobiotechnology. 2021;19:391. https://doi.org/10.1186/s12951-021-01148-0.

[78]

Perteghella S, Crivelli B, Catenacci L, et al. Stem cell-extracellular vesicles as drug delivery systems: new frontiers for silk/curcumin nanoparticles. Int J Pharm. 2017;520:86-97. https://doi.org/10.1016/j.ijpharm.2017.02.005.

[79]

Teng ML, Ng CH, Huang DQ, et al. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin Mol Hepatol. 2023;29:S32eS42. https://doi.org/10.3350/cmh.2022.0365.

[80]

Kostallari E, Valainathan S, Biquard L, Shah VH, Rautou PE. Role of extracel-lular vesicles in liver diseases and their therapeutic potential. Adv Drug Deliv Rev. 2021;175:113816. https://doi.org/10.1016/j.addr.2021.05.026.

[81]

Thietart S, Rautou PE. Extracellular vesicles as biomarkers in liver diseases: a clinician’s point of view. J Hepatol. 2020;73:1507-1525. https://doi.org/10.1016/j.jhep.2020.07.014.

[82]

Muńoz-Hernández R, Rojas á, Gato S, et al. Extracellular vesicles as bio-markers in liver disease. Int J Mol Sci. 2022;23:16217. https://doi.org/10.3390/ijms232416217.

[83]

Torres JL, Novo-Veleiro I, Manzanedo L, et al. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J Gastro-enterol. 2018;24:4104-4118. https://doi.org/10.3748/wjg.v24.i36.4104.

[84]

Yang F, Wu Y, Chen Y, et al. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate liver steatosis by promoting fatty acid oxida-tion and reducing fatty acid synthesis. JHEP Rep. 2023;5:100746. https://doi.org/10.1016/j.jhepr.2023.100746.

[85]

Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542:450-455. https://doi.org/10.1038/nature21365.

[86]

Li CJ, Fang QH, Liu ML, Lin JN. Current understanding of the role of adipose-derived extracellular vesicles in metabolic homeostasis and diseases: communication from the distance between cells/tissues. Theranostics. 2020;10:7422-7435. https://doi.org/10.7150/thno.42167.

[87]

Li W, Yu L. Role and therapeutic perspectives of extracellular vesicles derived from liver and adipose tissue in metabolic dysfunction-associated steatotic liver disease. Artif Cells Nanomed Biotechnol. 2024;52:355-369. https://doi.org/10.1080/21691401.2024.2360008.

[88]

Kuryłowicz A, Puzianowska-Kuźnicka M. Induction of adipose tissue brown-ing as a strategy to combat obesity. Int J Mol Sci. 2020;21:6241. https://doi.org/10.3390/ijms21176241.

[89]

Marlatt KL, Ravussin E. Brown adipose tissue: an update on recent findings. Curr Obes Rep. 2017;6:389-396. https://doi.org/10.1007/s13679-017-0283-6.

[90]

Villarroya F, Cereijo R, Gavaldá-Navarro A, Villarroya J, Giralt M. Inflammation of brown/beige adipose tissues in obesity and metabolic disease. J Intern Med. 2018;284:492-504. https://doi.org/10.1111/joim.12803.

[91]

Zhang B, Tian X, Hao J, Xu G, Zhang W. Mesenchymal stem cell-derived extracellular vesicles in tissue regeneration. Cell Transplant. 2020;29: 963689720908500. https://doi.org/10.1177/0963689720908500.

[92]

Song XJ, Zhang L, Li Q, Li Y, Ding FH, Li X. hUCB-MSC derived exosomal miR-124 promotes rat liver regeneration after partial hepatectomy via down-regulating Foxg1. Life Sci. 2021;265:118821. https://doi.org/10.1016/j.lfs.2020.118821.

[93]

Jin Y, Wang J, Li H, et al. Extracellular vesicles secreted by human adipose-derived stem cells (hASCs) improve survival rate of rats with acute liver failure by releasing lncRNA H19. EBioMedicine. 2018;34:231-242. https://doi.org/10.1016/j.ebiom.2018.07.015.

[94]

Zhao H, Shang Q, Pan Z, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macro-phages and beiging in white adipose tissue. Diabetes. 2018;67:235-247. https://doi.org/10.2337/db17-0356.

[95]

Subudhi PD, Bihari C, Sarin SK, Baweja S. Emerging role of edible exosomes-like nanoparticles (ELNs) as hepatoprotective agents. Nanotheranostics. 2022;6:365-375. https://doi.org/10.7150/ntno.70999.

[96]

Zhao WJ, Bian YP, Wang QH, et al. Blueberry-derived exosomes-like nano-particles ameliorate nonalcoholic fatty liver disease by attenuating mito-chondrial oxidative stress. Acta Pharmacol Sin. 2022;43:645-658. https://doi.org/10.1038/s41401-021-00681-w.

[97]

Kumar A, Sundaram K, Teng Y, et al. Ginger nanoparticles mediated induction of Foxa 2 prevents high-fat diet-induced insulin resistance. Theranostics. 2022;12:1388-1403. https://doi.org/10.7150/thno.62514.

[98]

Zhang J, Song H, Dong Y, et al. Surface engineering of HEK 293 cell-derived extracellular vesicles for improved pharmacokinetic profile and targeted de-livery of IL-12 for the treatment of hepatocellular carcinoma. Int J Nano-medicine. 2023;18:209-223. https://doi.org/10.2147/IJN.S388916.

[99]

Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology. 2018;67: 940-954. https://doi.org/10.1002/hep.29586.

[100]

Chen T, Zhu C, Wang X, Pan Y, Huang B. Asiatic acid encapsulated exosomes of hepatocellular carcinoma inhibit epithelial-mesenchymal transition through transforming growth factor beta/Smad signaling pathway. J Biomed Nano-technol. 2021;17:2338-2350. https://doi.org/10.1166/jbn.2021.3208.

[101]

Zhou X, Miao Y, Wang Y, et al. Tumour-derived extracellular vesicle mem-brane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J Extracell Vesicles. 2022;11: e12198. https://doi.org/10.1002/jev2.12198.

[102]

Wan T, Zhong J, Pan Q, Zhou T, Ping Y, Liu X. Exosome-mediated delivery of Cas9 ribonucleoprotein complexes for tissue-specific gene therapy of liver diseases. Sci Adv. 2022;8:eabp9435. https://doi.org/10.1126/sciadv.abp9435.

[103]

Kwan SY, Sheel A, Song CQ, et al. Depletion of TRRAP induces p53-independent senescence in liver cancer by down-regulating mitotic genes. Hepatology. 2020;71:275-290. https://doi.org/10.1002/hep.30807.

[104]

Wang Y, Zhao L, Yuan W, et al. A natural membrane vesicle exosome-based sinomenine delivery platform for hepatic carcinoma therapy. Curr Top Med Chem. 2021;21:1224e1234. https://doi.org/10.2174/1568026621666210612032004.

[105]

Gorshkov A, Purvinsh L, Brodskaia A, Vasin A. Exosomes as natural nano-carriers for RNA-based therapy and prophylaxis. Nanomaterials (Basel). 2022;12:524. https://doi.org/10.3390/nano12030524.

[106]

Wu D, Zhu H, Wang H. Extracellular vesicles in non-alcoholic fatty liver dis-ease and alcoholic liver disease. Front Physiol. 2021;12:707429. https://doi.org/10.3389/fphys.2021.707429.

[107]

Kodidela S, Ranjit S, Sinha N, McArthur C, Kumar A, Kumar S. Cytokine profiling of exosomes derived from the plasma of HIV-infected alcohol drinkers and cigarette smokers. PLoS One. 2018;13:e0201144. https://doi.org/10.1371/journal.pone.0201144.

[108]

Cai Y, Xu MJ, Koritzinsky EH, et al. Mitochondrial DNA-enriched microparti-cles promote acute-on-chronic alcoholic neutrophilia and hepatotoxicity. JCI Insight. 2017;2:e92634. https://doi.org/10.1172/jci.insight.92634.

[109]

Momen-Heravi F, Bala S, Kodys K, Szabo G. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci Rep. 2015;5:9991. https://doi.org/10.1038/srep09991.

[110]

Saha B, Momen-Heravi F, Kodys K, Szabo G. MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J Biol Chem. 2016;291:149-159. https://doi.org/10.1074/jbc.M115.694133.

[111]

Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013;22: 845-854. https://doi.org/10.1089/scd.2012.0395.

[112]

Yan Y, Jiang W, Tan Y, et al. hucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury. Mol Ther. 2017;25:465-479. https://doi.org/10.1016/j.ymthe.2016.11.019.

[113]

Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesen-chymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/b-catenin pathway. Stem Cell Res Ther. 2019;10:98. https://doi.org/10.1186/s13287-019-1204-2.

[114]

Lee WM, Stravitz RT, Larson AM. Introduction to the revised American asso-ciation for the study of liver diseases position paper on acute liver failure 2011. Hepatology. 2012;55:965-967. https://doi.org/10.1002/hep.25551.

[115]

European Association for the Study of the Liver, Clinical practice guidelines panel, Wendon J, et al. EASL clinical practical guidelines on the management of acute (fulminant) liver failure. J Hepatol. 2017;66:1047-1081. https://doi.org/10.1016/j.jhep.2016.12.003.

[116]

Lee WM, Squires Jr RH, Nyberg SL, Doo E, Hoofnagle JH. Acute liver failure: summary of a workshop. Hepatology. 2008;47:1401-1415. https://doi.org/10.1002/hep.22177.

[117]

Liu B, Lu Y, Chen X, et al. Protective role of shiitake mushroom-derived exosome-like nanoparticles in D-galactosamine and lipopolysaccharide-induced acute liver injury in mice. Nutrients. 2020;12:477. https://doi.org/10.3390/nu12020477.

[118]

Liu Y, Lou G, Li A, et al. AMSC-derived exosomes alleviate lipopolysaccharide/d- galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP 3 inflammasome activation in macrophages. EBioMedicine. 2018;36:140-150. https://doi.org/10.1016/j.ebiom.2018.08.054.

[119]

Zhang S, Jiang L, Hu H, et al. Pretreatment of exosomes derived from hUCMSCs with TNF-a ameliorates acute liver failure by inhibiting the activation of NLRP 3 in macrophage. Life Sci. 2020;246:117401. https://doi.org/10.1016/j.lfs.2020.117401.

[120]

Fang J, Liang W. ASCs -derived exosomes loaded with vitamin A and quercetin inhibit rapid senescence-like response after acute liver injury. Biochem Biophys Res Commun. 2021;572:125-130. https://doi.org/10.1016/j.bbrc.2021.07.059.

PDF (3321KB)

112

Accesses

0

Citation

Detail

Sections
Recommended

/