Bile acids and their receptors in hepatic immunity

Stefano Fiorucci , Silvia Marchianò , Eleonora Distrutti , Michele Biagioli

Liver Research ›› 2025, Vol. 9 ›› Issue (1) : 1 -16.

PDF (4733KB)
Liver Research ›› 2025, Vol. 9 ›› Issue (1) :1 -16. DOI: 10.1016/j.livres.2025.01.005
Review Articles
research-article

Bile acids and their receptors in hepatic immunity

Author information +
History +
PDF (4733KB)

Abstract

Similarly to conventional steroids, bile acids function as signaling molecules, acting on a family of membrane and nuclear receptors. The best-characterized bile acid-regulated receptors are the farnesoid X receptor, activated by primary bile acids, and the G-protein-coupled bile acid receptor 1 (also known as Takeda G protein-coupled receptor 5), which is activated by secondary bile acids, such as lithocholic acid (LCA) and deoxycholic acid. Both the farnesoid X receptor and G-protein-coupled bile acid receptor 1 are expressed in cells of innate immunity, monocytes/macrophages, and natural killer cells. Their activation in these cells provides counter-regulatory signals that are inhibitory in nature and attenuate inflammation. In recent years, however, it has been increasingly appreciated that bile acids biotransformations by intestinal microbiota result in the formation of chemically different secondary bile acids that potently regulate adaptive immunity. The 3-oxoLCA and isoalloLCA, two LCA derivatives, bind receptors such as the retinoic acid receptor-related orphan receptor gamma t (RORΥt) and the vitamin D receptor (VDR) that are expressed only by lymphoid cells, extending the regulatory role of bile acids to T cells, including T-helper 17 cells and type 3 innate lymphoid cells (ILC3). In this novel conceptual framework, bile acids have emerged as one of the main components of the postbiota, the waste array of chemical mediators generated by the intestinal microbiota. Deciphering the interaction of these mediators with the immune system in the intestine and liver is a novel and fascinating area of bile acid renaissance.

Keywords

Bile acids (BAs) / Immune regulation / Postbiotics / Gut microbiota / Receptors

Cite this article

Download citation ▾
Stefano Fiorucci, Silvia Marchianò, Eleonora Distrutti, Michele Biagioli. Bile acids and their receptors in hepatic immunity. Liver Research, 2025, 9(1): 1-16 DOI:10.1016/j.livres.2025.01.005

登录浏览全文

4963

注册一个新账户 忘记密码

Authors’ contributions

Stefano Fiorucci: Writing e review & editing, Writing e orig-inal draft, Conceptualization. Silvia Marchianò: Writing e review & editing. Eleonora Distrutti: Writing e review & editing. Michele Biagioli: Writing e review & editing, Writing e original draft, Conceptualization. All authors have read and agreed to the pub-lished version of the manuscript.

Declaration of competing interest

Stefano Fiorucci is an associate editor for Liver Research and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

References

[1]

Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M. Bile acids and their receptors in metabolic disorders. Prog Lipid Res. 2021;82:101094. https://doi.org/10.1016/j.plipres.2021.101094.

[2]

Fiorucci S, Marchianò S, Urbani G, et al. Immunology of bile acids regulated receptors. Prog Lipid Res. 2024;95:101291. https://doi.org/10.1016/j.plipres.2024.101291.

[3]

Mohanty I, Allaband C, Mannochio-Russo H, et al. The changing metabolic landscape of bile acids - keys to metabolism and immune regulation. Nat Rev Gastroenterol Hepatol. 2024;21:493-516. https://doi.org/10.1038/s41575-024-00914-3.

[4]

Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365-1368. https://doi.org/10.1126/science.284.5418.1365.

[5]

Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435-9440. https://doi.org/10.1074/jbc.M209706200.

[6]

Mohanty I, Mannochio-Russo H, Schweer JV, et al. The underappreciated di-versity of bile acid modifications. Cell. 2024;187:1801e 1818(e20). https://doi.org/10.1016/j.cell.2024.02.019.

[7]

Gentry EC, Collins SL, Panitchpakdi M, et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature. 2024;626:419-426. https://doi.org/10.1038/s41586-023-06906-8.

[8]

Hang S, Paik D, Yao L, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019;576:143-148. https://doi.org/10.1038/s41586-019-1785-z.

[9]

Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORg(þ) regulatory T cell homeostasis. Nature. 2020;577:410-415. https://doi.org/10.1038/s41586-019-1865-0.

[10]

Donepudi AC, Boehme S, Li F, Chiang JY. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice. Hepatology. 2017;65:813-827. https://doi.org/10.1002/hep.28707.

[11]

Gadaleta RM, Moschetta A.Metabolic messengers: fibroblast growth factor 15/19. Nat Metab. 2019;1:588-594. https://doi.org/10.1038/s42255-019-0074-3.

[12]

Quinn RA, Melnik AV, Vrbanac A, et al. Global chemical effects of the micro-biome include new bile-acid conjugations. Nature. 2020;579:123-129. https://doi.org/10.1038/s41586-020-2047-9.

[13]

Biagioli M, Carino A. Signaling from intestine to the host: how bile acids regulate intestinal and liver immunity. Handb Exp Pharmacol. 2019;256: 95-108. https://doi.org/10.1007/164_2019_225.

[14]

Sun D, Xie C, Zhao Y, et al. The gut microbiota-bile acid axis in cholestatic liver disease. Mol Med. 2024;30:104. https://doi.org/10.1186/s10020-024-00830-x.

[15]

Sato Y, Atarashi K, Plichta DR, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021;599:458-464. https://doi.org/10.1038/s41586-021-03832-5.

[16]

Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7:22-39. https://doi.org/10.1080/19490976.2015.1127483.

[17]

Rizzolo D, Buckley K, Kong B, et al. Bile acid homeostasis in a cholesterol 7a-hydroxylase and sterol 27-hydroxylase double knockout mouse model. Hep-atology. 2019;70:389-402. https://doi.org/10.1002/hep.30612.

[18]

Hamilton JP, Xie G, Raufman J-P, et al. Human cecal bile acids: concentration and spectrum. Am J Physiol Gastrointest Liver Physiol. 2007;293:G256eG263. https://doi.org/10.1152/ajpgi.00027.2007.

[19]

Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30:332-338. https://doi.org/10.1097/MOG.0000000000000057.

[20]

Li T, Francl JM, Boehme S, Chiang JY. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7a-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology. 2013;58: 1111-1121. https://doi.org/10.1002/hep.26427.

[21]

Doden HL, Wolf PG, Gaskins HR, Anantharaman K, Alves JMP, Ridlon JM. Completion of the gut microbial epi-bile acid pathway. Gut Microbes. 2021;13: 1-20. https://doi.org/10.1080/19490976.2021.1907271.

[22]

Song Z, Cai Y, Lao X, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome. 2019;7:9. https://doi.org/10.1186/s40168-019-0628-3.

[23]

He F, Li J, Mu Y, et al. Downregulation of endothelin-1 by farnesoid X receptor in vascular endothelial cells. Circ Res. 2006;98:192-199. https://doi.org/10.1161/01.res.0000200400.55539.85.

[24]

Foley MH, Walker ME, Stewart AK, et al. Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nat Microbiol. 2023;8:611-628. https://doi.org/10.1038/s41564-023-01337-7.

[25]

Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. Microbiome. 2021;9:140. https://doi.org/10.1186/s40168-021-01101-1.

[26]

Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human in-testinal bacteria. J Lipid Res. 2006;47:241-259. https://doi.org/10.1194/jlr.R500013-JLR200.

[27]

Wise JL, Cummings BP. The 7-a-dehydroxylation pathway: an integral component of gut bacterial bile acid metabolism and potential therapeutic target. Front Microbiol. 2022;13:1093420. https://doi.org/10.3389/fmicb.2022.1093420.

[28]

Heinken A, Ravcheev DA, Baldini F, Heirendt L, Fleming RMT, Thiele I. Sys-tematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome. 2019;7:75. https://doi.org/10.1186/s40168-019-0689-3.

[29]

Doden H, Sallam LA, Devendran S, et al. Metabolism of oxo-bile acids and characterization of recombinant 12a-hydroxysteroid dehydrogenases from bile acid 7a-dehydroxylating human gut bacteria. Appl Environ Microbiol. 2018; 84:e00235-18. https://doi.org/10.1128/AEM.00235-18.

[30]

Wang P, Chen Q, Yuan P, et al. Gut microbiota involved in desulfation of sulfated progesterone metabolites: a potential regulation pathway of maternal bile acid homeostasis during pregnancy. Front Microbiol. 2022;13: 1023623. https://doi.org/10.3389/fmicb.2022.1023623.

[31]

Robben J, Caenepeel P, Van Eldere J, Eyssen H. Effects of intestinal microbial bile salt sulfatase activity on bile salt kinetics in gnotobiotic rats. Gastroen-terology. 1988;94:494-502. https://doi.org/10.1016/0016-5085(88)90443-x.

[32]

Su X, Gao Y, Yang R. Gut microbiota derived bile acid metabolites maintain the homeostasis of gut and systemic immunity. Front Immunol. 2023;14:1127743. https://doi.org/10.3389/fimmu.2023.1127743.

[33]

de Boer JF, Verkade E, Mulder NL, et al. A human-like bile acid pool induced by deletion of hepatic. J Lipid Res. 2020;61:291-305. https://doi.org/10.1194/jlr.RA119000243.

[34]

Takahashi S, Fukami T, Masuo Y, et al. Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J Lipid Res. 2016;57:2130-2137. https://doi.org/10.1194/jlr.M071183.

[35]

Guo GL, Chiang JYL. Is CYP2C70 the key to new mouse models to understand bile acids in humans? J Lipid Res. 2020;61:269-271. https://doi.org/10.1194/jlr.C120000621.

[36]

Goodwin B, Jones SA, Price RR, et al. A regulatory cascade of the nuclear re-ceptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell. 2000;6:517-526. https://doi.org/10.1016/s1097-2765(00)00051-4.

[37]

Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 2014;7:12-18. https://doi.org/10.1016/j.celrep.2014.02.032.

[38]

Fiorucci S, Di Giorgio C, Distrutti E. Obeticholic acid: an update of its phar-macological activities in liver disorders. Handb Exp Pharmacol. 2019;256: 283-295. https://doi.org/10.1007/164_2019_227.

[39]

Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908-922. https://doi.org/10.1038/s41591-018-0104-9.

[40]

Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res. 2015;56:1085-1099. https://doi.org/10.1194/jlr.R054114.

[41]

Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflam-mation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15:111-128. https://doi.org/10.1038/nrgastro.2017.119.

[42]

Maruyama T, Miyamoto Y, Nakamura TTT, et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 2002;298: 714-719. https://doi.org/10.1016/s0006-291x(02)02550-0.

[43]

Biagioli M, Carino A, Fiorucci C, et al. GPBAR1 functions as gatekeeper for liver NKT cells and provides counterregulatory signals in mouse models of immune-mediated hepatitis. Cell Mol Gastroenterol Hepatol. 2019;8:447-473. https://doi.org/10.1016/j.jcmgh.2019.06.003.

[44]

Biagioli M, Di Giorgio C, Morretta E, et al. Development of dual GPBAR1 agonist and RORgt inverse agonist for the treatment of inflammatory bowel diseases. Pharmacol Res. 2024;208:107403. https://doi.org/10.1016/j.phrs.2024.107403.

[45]

Wang YD, Chen WD, Yu D, Forman BM, Huang W. The G-protein-coupled bile acid receptor, Gpbar 1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor k light-chain enhancer of activated B cells (NF-kB) in mice. Hepatology. 2011;54:1421-1432. https://doi.org/10.1002/hep.24525.

[46]

Biagioli M, Marchianò S, Roselli R, et al. Discovery of a AHR pelargonidin agonist that counter-regulates Ace 2 expression and attenuates ACE2-SARS-CoV-2 interaction. Biochem Pharmacol. 2021;188:114564. https://doi.org/10.1016/j.bcp.2021.114564.

[47]

Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. J Exp Med. 2018;215:383-396. https://doi.org/10.1084/jem.20171965.

[48]

Carino A, Marchianò S, Biagioli M, et al. Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohe-patitis. FASEB J. 2019;33:2809-2822. https://doi.org/10.1096/fj.201801373RR.

[49]

Biagioli M, Carino A, Cipriani S, et al. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J Immunol. 2017;199:718-733. https://doi.org/10.4049/jimmunol.1700183.

[50]

Shi Y, Su W, Zhang L, et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP 3 inflammasome activation. Front Immunol. 2020;11:609060. https://doi.org/10.3389/fimmu.2020.609060.

[51]

Soehnlein O, Libby P. Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20:589-610. https://doi.org/10.1038/s41573-021-00198-1.

[52]

Hu X, Yan J, Huang L, et al. INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun. 2021;91:587-600. https://doi.org/10.1016/j.bbi.2020.09.016.

[53]

Reich M, Spomer L, Klindt C, et al. Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing chol-angitis. J Hepatol. 2021;75:634-646. https://doi.org/10.1016/j.jhep.2021.03.029.

[54]

Keitel V, Reich M, Häussinger D. TGR5: pathogenetic role and/or therapeutic target in fibrosing cholangitis? Clin Rev Allergy Immunol. 2015;48:218-225. https://doi.org/10.1007/s12016-014-8443-x.

[55]

Festa C, Renga B, D’Amore C, et al. Exploitation of cholane scaffold for the discovery of potent and selective farnesoid X receptor (FXR) and G-protein coupled bile acid receptor 1 (GP-BAR1) ligands. J Med Chem. 2014;57: 8477-8495. https://doi.org/10.1021/jm501273r.

[56]

Forman BM, Goode E, Chen J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 1995;81:687-693. https://doi.org/10.1016/0092-8674(95)90530-8.

[57]

Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362-1365. https://doi.org/10.1126/science.284.5418.1362.

[58]

Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3:543-553. https://doi.org/10.1016/s1097-2765(00)80348-2.

[59]

Mencarelli A, Renga B, Migliorati M, et al. The bile acid sensor farnesoid X receptor is a modulator of liver immunity in a rodent model of acute hepatitis. J Immunol. 2009;183:6657-6666. https://doi.org/10.4049/jimmunol.0901347.

[60]

Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid re-ceptor FXR is a modulator of intestinal innate immunity. J Immunol. 2009;183: 6251-6261. https://doi.org/10.4049/jimmunol.0803978.

[61]

Renga B, Migliorati M, Mencarelli A, Fiorucci S. Reciprocal regulation of the bile acid-activated receptor FXR and the interferon-gamma-STAT-1 pathway in macrophages. Biochim Biophys Acta. 2009;1792:564-573. https://doi.org/10.1016/j.bbadis.2009.04.004.

[62]

Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile acids activated receptors regulate innate immunity. Front Immunol. 2018;9:1853. https://doi.org/10.3389/fimmu.2018.01853.

[63]

Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005: 2217 e2225. https://doi.org/10.1016/j.cmet.2005.09.001.

[64]

Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113: 1408-1418. https://doi.org/10.1172/JCI21025.

[65]

Renga B, Mencarelli A, Migliorati M, et al. SHP-dependent and -independent induction of peroxisome proliferator-activated receptor-g by the bile acid sensor farnesoid X receptor counter-regulates the pro-inflammatory pheno-type of liver myofibroblasts. Inflamm Res. 2011;60:577-587. https://doi.org/10.1007/s00011-010-0306-1.

[66]

Yuk JM, Shin DM, Lee HM, et al. The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors. Nat Immunol. 2011;12:742-751. https://doi.org/10.1038/ni.2064.

[67]

Yang CS, Kim JJ, Kim TS, et al. Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP 3 inflammasome. Nat Commun. 2015;6:6115. https://doi.org/10.1038/ncomms7115.

[68]

Renga B, Mencarelli A, Cipriani S, et al. The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation. PLoS One. 2013;8:e54472. https://doi.org/10.1371/journal.pone.0054472.

[69]

Fiorucci S, Antonelli E, Rizzo G, et al. The nuclear receptor SHP mediates in-hibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology. 2004;127:1497-1512. https://doi.org/10.1053/j.gastro.2004.08.001.

[70]

Das A, Fernandez-Zapico MEE, Cao S, et al. Disruption of an SP2/KLF 6 repression complex by SHP is required for farnesoid X receptor-induced endothelial cell migration. J Biol Chem. 2006;281:39105-39113. https://doi.org/10.1074/jbc.M607720200.

[71]

Hao H, Cao L, Jiang C, et al. Farnesoid X receptor regulation of the NLRP 3 inflammasome underlies cholestasis-associated sepsis. Cell Metab. 2017; 25: 856e867(e5). https://doi.org/10.1016/j.cmet.2017.03.007.

[72]

Sepe V, Distrutti E, Fiorucci S, Zampella A. Farnesoid X receptor modulators 2014-present: a patent review. Expert Opin Ther Pat. 2018;28:351-364. https://doi.org/10.1080/13543776.2018.1459569.

[73]

Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Current landscape and evolving therapies for primary biliary cholangitis. Cells. 2024;13:1580. https://doi.org/10.3390/cells13181580.

[74]

Rinella ME, Lazarus JV, Ratziu V, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023;78: 1966-1986. https://doi.org/10.1097/HEP.0000000000000520.

[75]

Dufour JF, Anstee QM, Bugianesi E, et al. Current therapies and new de-velopments in NASH. Gut. 2022;71:2123-2134. https://doi.org/10.1136/gutjnl-2021-326874.

[76]

Renga B, Mencarelli A, D’Amore C, et al. Discovery that theonellasterol a marine sponge sterol is a highly selective FXR antagonist that protects against liver injury in cholestasis. PLoS One. 2012;7:e30443. https://doi.org/10.1371/journal.pone.0030443.

[77]

Gege C, Hambruch E, Hambruch N, Kinzel O, Kremoser C. Nonsteroidal FXR ligands: current status and clinical applications. Handb Exp Pharmacol. 2019;256:167-205. https://doi.org/10.1007/164_2019_232.

[78]

Nagahashi M, Yuza K, Hirose Y, et al. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. J Lipid Res. 2016;57: 1636-1643. https://doi.org/10.1194/jlr.R069286.

[79]

Nagahashi M, Takabe K, Liu R, et al. Conjugated bile acid-activated S1P re-ceptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology. 2015;61:1216-1226. https://doi.org/10.1002/hep.27592.

[80]

Murakami M, Kamimura D, Hirano T. Pleiotropy and specificity: insights from the interleukin 6 family of cytokines. Immunity. 2019;50:812-831. https://doi.org/10.1016/j.immuni.2019.03.027.

[81]

Ma D, Jing X, Shen B, et al. Leukemia inhibitory factor receptor negatively regulates the metastasis of pancreatic cancer cells in vitro and in vivo. Oncol Rep. 2016;36:827-836. https://doi.org/10.3892/or.2016.4865.

[82]

Hunter SA, McIntosh BJ, Shi Y, et al. An engineered ligand trap inhibits leu-kemia inhibitory factor as pancreatic cancer treatment strategy. Commun Biol. 2021;4:452. https://doi.org/10.1038/s42003-021-01928-2.

[83]

Di Giorgio C, Morretta E, Lupia A, et al. Bile acids serve as endogenous an-tagonists of the leukemia inhibitory factor (LIF) receptor in oncogenesis. Biochem Pharmacol. 2024;223:116134. https://doi.org/10.1016/j.bcp.2024.116134.

[84]

Di Giorgio C, Bellini R, Lupia A, et al. The leukemia inhibitory factor regulates fibroblast growth factor receptor 4 transcription in gastric cancer. Cell Oncol (Dordr). 2023;47:695-710. https://doi.org/10.1007/s13402-023-00893-8.

[85]

Staudinger JL, Goodwin B, Jones SA, et al. The nuclear receptor PXR is a lith-ocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A. 2001;98:3369-3374. https://doi.org/10.1073/pnas.051551698.

[86]

Sun M, Cui W, Woody SK, Staudinger JL. Pregnane X receptor modulates the inflammatory response in primary cultures of hepatocytes. Drug Metab Dispos. 2015;43:335e343. https://doi.org/10.1124/dmd.114.062307.

[87]

Shah YM, Ma X, Morimura K, Kim I, Gonzalez FJ. Pregnane X receptor acti-vation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-kappaB target gene expression. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1114eG1122. https://doi.org/10.1152/ajpgi.00528.2006.

[88]

Mencarelli A, Migliorati M, Barbanti M, et al. Pregnane-X-receptor mediates the anti-inflammatory activities of rifaximin on detoxification pathways in intestinal epithelial cells. Biochem Pharmacol. 2010;80:1700-1707. https://doi.org/10.1016/j.bcp.2010.08.022.

[89]

Sun L, Sun Z, Wang Q, Zhang Y, Jia Z. Role of nuclear receptor PXR in immune cells and inflammatory diseases. Front Immunol. 2022;13:969399. https://doi.org/10.3389/fimmu.2022.969399.

[90]

Gao J, Xie W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol Sci. 2012;33:552-558. https://doi.org/10.1016/j.tips.2012.07.003.

[91]

Zhao T, Zhong G, Wang Y, et al. Pregnane X receptor activation in liver macrophages protects against endotoxin-induced liver injury. Adv Sci (Weinh). 2024;11:e2308771. https://doi.org/10.1002/advs.202308771.

[92]

Bautista-Olivier CD, Elizondo G. PXR as the tipping point between innate immune response, microbial infections, and drug metabolism. Biochem Pharmacol. 2022;202:115147. https://doi.org/10.1016/j.bcp.2022.115147.

[93]

Horn P, Tacke F. Metabolic reprogramming in liver fibrosis. Cell Metab. 2024;36:1439-1455. https://doi.org/10.1016/j.cmet.2024.05.003.

[94]

Rakateli L, Huchzermeier R,van der Vorst EPC. AhR, PXR and CAR: from xenobiotic receptors to metabolic sensors. Cells. 2023;12:2752. https://doi.org/10.3390/cells12232752.

[95]

Dutta M, Lim JJ, Cui JY. Pregnane X receptor and the gut-liver axis: a recent update. Drug Metab Dispos. 2022;50:478-491. https://doi.org/10.1124/dmd.121.000415.

[96]

Garg A, Zhao A, Erickson SL, et al. Pregnane X receptor activation attenuates inflammation-associated intestinal epithelial barrier dysfunction by inhibiting cytokine-induced myosin light-chain kinase expression and c-jun N-terminal kinase 1/2 activation. J Pharmacol Exp Ther. 2016;359:91e101. https://doi.org/10.1124/jpet.116.234096.

[97]

Venkatesh M, Mukherjee S, Wang H, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014;41:296-310. https://doi.org/10.1016/j.immuni.2014.06.014.

[98]

Flannigan KL, Nieves KM, Szczepanski HE, et al. The pregnane X receptor and indole-3-propionic acid shape the intestinal mesenchyme to restrain inflammation and fibrosis. Cell Mol Gastroenterol Hepatol. 2023;15:765e795. https://doi.org/10.1016/j.jcmgh.2022.10.014.

[99]

Solt LA, Kumar N, Nuhant P, et al. Suppression of TH 17 differentiation and autoimmunity by a synthetic ROR ligand. Nature. 2011;472:491-494. https://doi.org/10.1038/nature10075.

[100]

Wang Y, Yu Y, Li L, et al. Bile acid-dependent transcription factors and chromatin accessibility determine regional heterogeneity of intestinal anti-microbial peptides. Nat Commun. 2023;14:5093. https://doi.org/10.1038/s41467-023-40565-7.

[101]

Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002;296:1313-1316. https://doi.org/10.1126/science.1070477.

[102]

Ishizawa M, Akagi D, Makishima M. Lithocholic acid is a vitamin D receptor ligand that acts preferentially in the ileum. Int J Mol Sci. 2018;19:1975. https://doi.org/10.3390/ijms19071975.

[103]

Yamada T, Hino S, Iijima H, et al. Mucin O-glycans facilitate symbiosynthesis to maintain gut immune homeostasis. EBioMedicine. 2019;48:513-525. https://doi.org/10.1016/j.ebiom.2019.09.008.

[104]

Gupta VK, Sahu L, Sonwal S, et al. Advances in biomedical applications of vitamin D for VDR targeted management of obesity and cancer. Biomed Pharmacother. 2024;177:117001. https://doi.org/10.1016/j.biopha.2024.117001.

[105]

Wang X, Wang J, Peng H, Zuo L, Wang H. Role of immune cell interactions in alcohol-associated liver diseases. Liver Res. 2024;8:72e82. https://doi.org/10.1016/j.livres.2024.06.002.

[106]

Liu X, Wu Y, Li Y, et al. Vitamin D receptor (VDR) mediates the quiescence of activated hepatic stellate cells (aHSCs) by regulating M2 macrophage exoso-mal smooth muscle cell-associated protein 5 (SMAP-5). J Zhejiang Univ-Sci B. 2023;24:248-261. https://doi.org/10.1631/jzus.B2200383.

[107]

Ebadi M, Ip S, Lytvyak E, et al. Vitamin D is associated with clinical outcomes in patients with primary biliary cholangitis. Nutrients. 2022;14:878. https://doi.org/10.3390/nu14040878.

[108]

Campbell C, McKenney PT, Konstantinovsky D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020;581:475-479. https://doi.org/10.1038/s41586-020-2193-0.

[109]

Barchetta I, Cimini FA, Cavallo MG. Vitamin D and metabolic dysfunction-associated fatty liver disease (MAFLD): an update. Nutrients. 2020;12:3302. https://doi.org/10.3390/nu12113302.

[110]

Liu J, Song Y, Wang Y, Hong H. Vitamin D/vitamin D receptor pathway in non-alcoholic fatty liver disease. Expert Opin Ther Targets. 2023;27:1145-1157. https://doi.org/10.1080/14728222.2023.2274099.

[111]

Chen ML, Huang X, Wang H, et al. CAR directs T cell adaptation to bile acids in the small intestine. Nature. 2021;593:147-151. https://doi.org/10.1038/s41586-021-03421-6.

[112]

Wagner M, Halilbasic E, Marschall H-U, et al. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology. 2005;42:420-430. https://doi.org/10.1002/hep.20784.

[113]

Lickteig AJ, Csanaky IL, Pratt-Hyatt M, Klaassen CD. Activation of constitutive androstane receptor (CAR) in mice results in maintained biliary excretion of bile acids despite a marked decrease of bile acids in liver. Toxicol Sci. 2016;151:403-418. https://doi.org/10.1093/toxsci/kfw054.

[114]

Cai X, Young GM, Xie W. The xenobiotic receptors PXR and CAR in liver physiology, an update. Biochim Biophys Acta Mol Basis Dis. 2021;1867:166101. https://doi.org/10.1016/j.bbadis.2021.166101.

[115]

Moreau A, Vilarem MJ, Maurel P, Pascussi JM. Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response. Mol Pharm. 2008;5:35e41. https://doi.org/10.1021/mp700103m.

[116]

Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgam-mat directs the differentiation program of proinflammatory IL-17þ T helper cells. Cell. 2006;126:1121-1133. https://doi.org/10.1016/j.cell.2006.07.035.

[117]

Eberl G. RORgt, a multitask nuclear receptor at mucosal surfaces. Mucosal Immunol. 2017;10:27-34. https://doi.org/10.1038/mi.2016.86.

[118]

Ivanov II, Zhou L, Littman DR. Transcriptional regulation of Th17 cell differ-entiation. Semin Immunol. 2007;19:409e417. https://doi.org/10.1016/j.smim.2007.10.011.

[119]

Capone A, Volpe E. Transcriptional regulators of T helper 17 cell differentia-tion in health and autoimmune diseases. Front Immunol. 2020;11:348. https://doi.org/10.3389/fimmu.2020.00348.

[120]

Paik D, Yao L, Zhang Y, et al. Human gut bacteria produce ΤН17-modulating bile acid metabolites. Nature. 2022;603:907-912. https://doi.org/10.1038/s41586-022-04480-z.

[121]

Biagioli M, Fiorucci S. Bile acid activated receptors: integrating immune and metabolic regulation in non-alcoholic fatty liver disease. Liver Res. 2021;5: 119-141. https://doi.org/10.1016/j.livres.2021.08.003.

[122]

Biagioli M, Di Giorgio C, Massa C, et al. Microbial-derived bile acid reverses inflammation in IBD via GPBAR1 agonism and RORgt inverse agonism. Biomed Pharmacother. 2024;181:117731. https://doi.org/10.1016/j.biopha.2024.117731.

[123]

Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on. Cell. 2018;174:1054-1066. https://doi.org/10.1016/j.cell.2018.07.017.

[124]

Lin CI, Wang YW, Liu CY, Chen HW, Liang PH, Chuang YH. Regulatory T cells in inflamed liver are dysfunctional in murine primary biliary cholangitis. Clin Exp Immunol. 2024;215:225-239. https://doi.org/10.1093/cei/uxad117.

[125]

Guo Y, Liu Y, Rui B, et al. Crosstalk between the gut microbiota and innate lymphoid cells in intestinal mucosal immunity. Front Immunol. 2023;14: 1171680. https://doi.org/10.3389/fimmu.2023.1171680.

[126]

Chan WK, Chuah KH, Rajaram RB, Lim LL, Ratnasingam J, Vethakkan SR. Metabolic dysfunction-associated steatotic liver disease (MASLD): a state-of-the-art review. J Obes Metab Syndr. 2023;32:197-213. https://doi.org/10.7570/jomes23052.

[127]

Miao L, Targher G, Byrne CD, Cao Y-Y, Zheng M-H. Current status and future trends of the global burden of MASLD. Trends Endocrinol Metab. 2024;35: 697-707. https://doi.org/10.1016/j.tem.2024.02.007.

[128]

Targher G, Byrne CD, Tilg H. MASLD: a systemic metabolic disorder with cardiovascular and malignant complications. Gut. 2024;73:691-702. https://doi.org/10.1136/gutjnl-2023-330595.

[129]

Fiorucci S, Distrutti E. Linking liver metabolic and vascular disease via bile acid signaling. Trends Mol Med. 2021;28:51e66. https://doi.org/10.1016/j.molmed.2021.10.005.

[130]

Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021;18:223-238. https://doi.org/10.1038/s41575-020-00381-6.

[131]

Harrison SA, Bedossa P, Guy CD, et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N Engl J Med. 2024;390:497-509. https://doi.org/10.1056/NEJMoa2309000.

[132]

Nogueiras R, Nauck MA, Tschöp MH. Gut hormone co-agonists for the treat-ment of obesity: from bench to bedside. Nat Metab. 2023;5:933e944. https://doi.org/10.1038/s42255-023-00812-z.

[133]

Tacke F, Puengel T, Loomba R, Friedman SL. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J Hepatol. 2023;79:552e566. https://doi.org/10.1016/j.jhep.2023.03.038.

[134]

Kowdley KV, Bowlus CL, Levy C, et al. Efficacy and safety of elafibranor in primary biliary cholangitis. N Engl J Med. 2024;390:795-805. https://doi.org/10.1056/NEJMoa2306185.

[135]

Andrews TS, Nakib D, Perciani CT, et al. Single-cell, single-nucleus, and spatial transcriptomics characterization of the immunological landscape in the healthy and PSC human liver. J Hepatol. 2024;80:730-743. https://doi.org/10.1016/j.jhep.2023.12.023.

[136]

Kountouras J, Kazakos E, Kyrailidi F, et al. Innate immunity and nonalcoholic fatty liver disease. Ann Gastroenterol. 2023;36:244-256. https://doi.org/10.20524/aog.2023.0793.

[137]

Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate immunity and inflammation in NAFLD/NASH. Dig Dis Sci. 2016;61:1294-1303. https://doi.org/10.1007/s10620-016-4049-x.

[138]

Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397-411. https://doi.org/10.1038/nrgastro.2017.38.

[139]

Kunzmann LK, Schoknecht T, Poch T, et al. Monocytes as potential mediators of pathogen-induced T-helper 17 differentiation in patients with primary sclerosing cholangitis (PSC). Hepatology. 2020;72:1310-1326. https://doi.org/10.1002/hep.31140.

[140]

Kazankov K, Jørgensen SMD, Thomsen KL, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019;16:145-159. https://doi.org/10.1038/s41575-018-0082-x.

[141]

Henning JR, Graffeo CS, Rehman A, et al. Dendritic cells limit fibroin-flammatory injury in nonalcoholic steatohepatitis in mice. Hepatology. 2013;58:589-602. https://doi.org/10.1002/hep.26267.

[142]

Peng H, Wisse E, Tian Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol. 2016;13:328-336. https://doi.org/10.1038/cmi.2015.96.

[143]

Weninger W, Biro M, Jain R. Leukocyte migration in the interstitial space of non-lymphoid organs. Nat Rev Immunol. 2014;14:232-246. https://doi.org/10.1038/nri3641.

[144]

Hintermann E, Christen U. The many roles of cell adhesion molecules in he-patic fibrosis. Cells. 2019;8:1503. https://doi.org/10.3390/cells8121503.

[145]

Rai RP, Liu Y, Iyer SS, et al. Blocking integrin a(4)b(7)-mediated CD4 T cell recruitment to the intestine and liver protects mice from western diet-induced non-alcoholic steatohepatitis. J Hepatol. 2020;73:1013-1022. https://doi.org/10.1016/j.jhep.2020.05.047.

[146]

Massafra V, Ijssennagger N, Plantinga M, et al. Splenic dendritic cell involvement in FXR-mediated amelioration of DSS colitis. Biochim Biophys Acta. 2016;1862:166-173. https://doi.org/10.1016/j.bbadis.2015.11.001.

[147]

Marchianò S, Biagioli M, Bordoni M, et al. Defective bile acid signaling pro-motes vascular dysfunction, supporting a role for g-protein bile acid receptor 1/farnesoid X receptor agonism and statins in the treatment of nonalcoholic fatty liver disease. J Am Heart Assoc. 2023;12:e031241. https://doi.org/10.1161/JAHA.123.031241.

[148]

Fiorucci S, Zampella A, Cirino G, Bucci M, Distrutti E. Decoding the vaso-regulatory activities of bile acid-activated receptors in systemic and portal circulation: role of gaseous mediators. Am J Physiol Heart Circ Physiol. 2017;312:H21eH32. https://doi.org/10.1152/ajpheart.00577.2016.

[149]

Renga B, Bucci M, Cipriani S, et al. Cystathionine g-lyase, a H2S-generating enzyme, is a GPBAR1-regulated gene and contributes to vasodilation caused by secondary bile acids. Am J Physiol Heart Circ Physiol. 2015;309:H114eH126. https://doi.org/10.1152/ajpheart.00087.2015.

[150]

Zhou Y, Zhang H, Yao Y, Zhang X, Guan Y, Zheng F. CD4(þ) T cell activation and inflammation in NASH-related fibrosis. Front Immunol. 2022;13:967410. https://doi.org/10.3389/fimmu.2022.967410.

[151]

Huby T, Gautier EL. Immune cell-mediated features of non-alcoholic steato-hepatitis. Nat Rev Immunol. 2022;22:429-443. https://doi.org/10.1038/s41577-021-00639-3.

[152]

Peiseler M, Schwabe R, Hampe J, Kubes P, Heikenwälder M, Tacke F. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol. 2022;77:1136-1160. https://doi.org/10.1016/j.jhep.2022.06.012.

[153]

Mossanen JC, Krenkel O, Ergen C, et al. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology. 2016;64:1667-1682. https://doi.org/10.1002/hep.28682.

[154]

Ratziu V, Sanyal A, Harrison SA, et al. Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: final analysis of the phase 2b CENTAUR study. Hepatology. 2020;72:892-905. https://doi.org/10.1002/hep.31108.

[155]

Marchianò S, Biagioli M, Roselli R, et al. Beneficial effects of UDCA and nor-UDCA in a rodent model of steatosis are linked to modulation of GPBAR1/FXR signaling. Biochim Biophys Acta Mol Cell Biol Lipids. 2022;1867:159218. https://doi.org/10.1016/j.bbalip.2022.159218.

[156]

Kobayashi T, Iwaki M, Nakajima A, Nogami A, Yoneda M. Current research on the pathogenesis of NAFLD/NASH and the gut-liver axis: gut microbiota, dysbiosis, and leaky-gut syndrome. Int J Mol Sci. 2022;23:11689. https://doi.org/10.3390/ijms231911689.

[157]

Gruzdev SK, Podoprigora IV, Gizinger OA. Immunology of gut microbiome and liver in non-alcoholic fatty liver disease (NAFLD): mechanisms, bacteria, and novel therapeutic targets. Arch Microbiol. 2024;206:62. https://doi.org/10.1007/s00203-023-03752-0.

[158]

Fiorucci S, Biagioli M, Sepe V, Zampella A, Distrutti E. Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs. 2020;29:623-632. https://doi.org/10.1080/13543784.2020.1763302.

[159]

De Marino S, Ummarino R, D’Auria MV, et al. Theonellasterols and con-icasterols from Theonella swinhoei. Novel marine natural ligands for human nuclear receptors. J Med Chem. 2011;54:3065-3075. https://doi.org/10.1021/jm200169t.

[160]

Sepe V, Bifulco G, Renga B, D’Amore C, Fiorucci S, Zampella A. Discovery of sulfated sterols from marine invertebrates as a new class of marine natural antagonists of farnesoid-X-receptor. J Med Chem. 2011;54:1314-1320. https://doi.org/10.1021/jm101336m.

[161]

Marino S De, Festa C, Sepe V, et al. Chemistry and pharmacology of GPBAR1 and FXR selective agonists, dual agonists, and antagonists. Handb Exp Phar-macol. 2019;256:137-165. https://doi.org/10.1007/164_2019_237.

[162]

Vassileva G, Hu W, Hoos L, et al. Gender-dependent effect of Gpbar 1 genetic deletion on the metabolic profiles of diet-induced obese mice. J Endocrinol. 2010;205:225-232. https://doi.org/10.1677/JOE-10-0009.

[163]

Biagioli M, Marchianò S, Di Giorgio C, et al. Activation of GPBAR1 attenuates vascular inflammation and atherosclerosis in a mouse model of NAFLD-related cardiovascular disease. Biochem Pharmacol. 2023;218:115900. https://doi.org/10.1016/j.bcp.2023.115900.

[164]

Pols TW, Nomura M, Harach T, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 2011;14: 747-757. https://doi.org/10.1016/j.cmet.2011.11.006.

[165]

Carino A, Cipriani S, Marchianò S, et al. Gpbar 1 agonism promotes a Pgc-1a-dependent browning of white adipose tissue and energy expenditure and reverses diet-induced steatohepatitis in mice. Sci Rep. 2017;7:13689. https://doi.org/10.1038/s41598-017-13102-y.

[166]

Sepe V, Renga B, Festa C, et al. Modification on ursodeoxycholic acid (UDCA) scaffold. discovery of bile acid derivatives as selective agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1). J Med Chem. 2014;57: 7687-7701. https://doi.org/10.1021/jm500889f.

[167]

Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid ho-meostasis. Cell. 2000;102:731-744. https://doi.org/10.1016/s0092-8674(00) 00062-3.

[168]

Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116:1102-1109. https://doi.org/10.1172/JCI25604.

[169]

Sumida Y, Yoneda M, Tokushige K, et al. Antidiabetic therapy in the treatment of nonalcoholic steatohepatitis. Int J Mol Sci. 2020;21:1907. https://doi.org/10.3390/ijms21061907.

[170]

Pellicciari R, Fiorucci S, Camaioni E, et al. 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem. 2002;45:3569-3572. https://doi.org/10.1021/jm025529g.

[171]

Sepe V, Distrutti E, Limongelli V, Fiorucci S, Zampella A. Steroidal scaffolds as FXR and GPBAR1 ligands: from chemistry to therapeutical application. Future Med Chem. 2015;7:1109-1135. https://doi.org/10.4155/fmc.15.54.

[172]

Nevens F, Andreone P, Mazzella G, et al. A placebo-controlled trial of obe-ticholic acid in primary biliary cholangitis. N Engl J Med. 2016;375:631-643. https://doi.org/10.1056/NEJMoa1509840.

[173]

Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, rando-mised, placebo-controlled phase 3 trial. Lancet. 2019;394:2184-2196. https://doi.org/10.1016/S0140-6736(19)33041-7.

[174]

Fiorucci S, Biagioli M, Distrutti E. Future trends in the treatment of non-alcoholic steatohepatitis. Pharmacol Res. 2018;134:289-298. https://doi.org/10.1016/j.phrs.2018.07.014.

[175]

Trauner M, Gulamhusein A, Hameed B, et al. The nonsteroidal farnesoid X receptor agonist cilofexor (GS-9674) improves markers of cholestasis and liver injury in patients with primary sclerosing cholangitis. Hepatology. 2019;70:788e801. https://doi.org/10.1002/hep.30509.

[176]

Patel K, Harrison SA, Elkhashab M, et al. Cilofexor, a nonsteroidal FXR agonist, in patients with noncirrhotic NASH: a phase 2 randomized controlled trial. Hepatology. 2020;72:58e71. https://doi.org/10.1002/hep.31205.

[177]

Wu K, Zhao T, Hogstrand C, et al. FXR-mediated inhibition of autophagy contributes to FA-induced TG accumulation and accordingly reduces FA-induced lipotoxicity. Cell Commun Signal. 2020;18:47. https://doi.org/10.1186/s12964-020-0525-1.

[178]

Ferrell JM, Pathak P, Boehme S, Gilliland T, Chiang JYL. Deficiency of both farnesoid X receptor and Takeda G protein-Coupled receptor 5 exacerbated liver fibrosis in mice. Hepatology. 2019;70:955-970. https://doi.org/10.1002/hep.30513.

[179]

Carino A, Cipriani S, Marchianò S, et al. BAR502, a dual FXR and GPBAR1 agonist, promotes browning of white adipose tissue and reverses liver stea-tosis and fibrosis. Sci Rep. 2017;7:42801. https://doi.org/10.1038/srep42801.

[180]

Carino A, Marchianò S, Biagioli M, et al. Transcriptome analysis of dual FXR and GPBAR1 agonism in rodent model of NASH reveals modulation of lipid droplets formation. Nutrients. 2019;11:1132. https://doi.org/10.3390/nu11051132.

[181]

Fiorucci S, Sepe V, Biagioli M, et al. Development of bile acid activated re-ceptors hybrid molecules for the treatment of inflammatory and metabolic disorders. Biochem Pharmacol. 2023;216:115776. https://doi.org/10.1016/j.bcp.2023.115776.

[182]

Roth JD, Feigh M, Veidal SS, et al. INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. World J Gastroenterol. 2018;24:195-210. https://doi.org/10.3748/wjg.v24.i2.195.

[183]

Comeglio P, Cellai I, Mello T, et al. INT-767 prevents NASH and promotes visceral fat brown adipogenesis and mitochondrial function. J Endocrinol. 2018;238:107-127. https://doi.org/10.1530/JOE-17-0557.

[184]

Marchianò S, Biagioli M, Morretta E, et al. Combinatorial therapy with BAR502 and UDCA resets FXR and GPBAR1 signaling and reverses liver histopathology in a model of NASH. Sci Rep. 2023;13:1602. https://doi.org/10.1038/s41598-023-28647-4.

[185]

Tam PKH, Yiu RS, Lendahl U, Andersson ER. Cholangiopathies - towards a molecular understanding. EBioMedicine. 2018;35:381-393. https://doi.org/10.1016/j.ebiom.2018.08.024.

[186]

Zukowski TH, Jorgensen RA, Dickson ER, Lindor KD. Autoimmune conditions associated with primary biliary cirrhosis: response to ursodeoxycholic acid therapy. Am J Gastroenterol. 1998;93:958-961. https://doi.org/10.1111/j.1572-241.1998.00287.x.

[187]

Lv T, Chen S, Li M, Zhang D, Kong Y, Jia J. Regional variation and temporal trend of primary biliary cholangitis epidemiology: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2021;36:1423-1434. https://doi.org/10.1111/jgh.15329.

[188]

Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing chol-angitis - a comprehensive review. J Hepatol. 2017;67:1298-1323. https://doi.org/10.1016/j.jhep.2017.07.022.

[189]

Boonstra K, van Erpecum KJ, et al. Primary sclerosing cholangitis is associated with a distinct phenotype of inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:2270-2276. https://doi.org/10.1002/ibd.22938.

[190]

Maillette de Buy Wenniger LJ, Hohenester S, Maroni L, van Vliet SJ, Oude Elferink RP, Beuers U. The cholangiocyte glycocalyx stabilizes the ‘biliary HCO3 umbrella’: an integrated line of defense against toxic bile acids. Dig Dis. 2015;33:397-407. https://doi.org/10.1159/000371864.

[191]

Merlen G, Kahale N, Ursic-Bedoya J, et al. TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function. Gut. 2020;69: 146-157. https://doi.org/10.1136/gutjnl-2018-316975.

[192]

Keitel V, Donner M, Winandy S, Kubitz R, Häussinger D. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun. 2008;372:78-84. https://doi.org/10.1016/j.bbrc.2008.04.171.

[193]

Zhang F, Xiao X, Li Y, et al. Therapeutic opportunities of GPBAR1 in cholestatic diseases. Front Pharmacol. 2022;12:805269. https://doi.org/10.3389/fphar.2021.805269.

[194]

Reich M, Deutschmann K, Sommerfeld A, et al. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut. 2016;65: 487-501. https://doi.org/10.1136/gutjnl-2015-309458.

[195]

Hov JR, Keitel V, Laerdahl JK, et al. Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS One. 2010;5:e12403. https://doi.org/10.1371/journal.pone.0012403.

[196]

Hov JR, Keitel V, Schrumpf E, Häussinger D, Karlsen TH. TGR5 sequence variation in primary sclerosing cholangitis. Dig Dis. 2011;29:78-84. https://doi.org/10.1159/000324138.

[197]

Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X re-ceptor antagonizes nuclear factor kB in hepatic inflammatory response. Hepatology. 2008;48:1632-1643. https://doi.org/10.1002/hep.22519.

[198]

Kim I, Morimura K, Shah Y, Yang Q, Ward JM, Gonzalez FJ. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis. 2007;28:940-946. https://doi.org/10.1093/carcin/bgl249.

[199]

Yang F, Huang X, Yi T, Yen Y, Moore DD, Huang W. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 2007;67:863-867. https://doi.org/10.1158/0008-5472.CAN-06-1078.

[200]

Murillo Perez CF, Fisher H, Hiu S, et al. Greater transplant-free survival in patients receiving obeticholic acid for primary biliary cholangitis in a clinical trial setting compared to real-world external controls. Gastroenterology. 2022; 163:1630e1642(e3). https://doi.org/10.1053/j.gastro.2022.08.054.

[201]

Fenoglio D, Bernuzzi F, Battaglia F, et al. Th17 and regulatory T lymphocytes in primary biliary cirrhosis and systemic sclerosis as models of autoimmune fibrotic diseases. Autoimmun Rev. 2012;12:300-304. https://doi.org/10.1016/j.autrev.2012.05.004.

[202]

Shi T, Zhang T, Zhang L, Yang Y, Zhang H, Zhang F. The distribution and the fibrotic role of elevated inflammatory Th17 cells in patients with primary biliary cirrhosis. Medicine (Baltimore). 2015;94:e1888. https://doi.org/10.1097/MD.0000000000001888.

[203]

Sun Q, Wang Q, Feng N, et al. The expression and clinical significance of serum IL-17 in patients with primary biliary cirrhosis. Ann Transl Med. 2019;7:389. https://doi.org/10.21037/atm.2019.07.100.

[204]

Zhang H, Bernuzzi F, Lleo A, Ma X, Invernizzi P. Therapeutic potential of IL-17-mediated signaling pathway in autoimmune liver diseases. Mediators Inflamm. 2015;2015:436450. https://doi.org/10.1155/2015/436450.

[205]

Sun M, He C, Chen L, et al. RORgt represses IL-10 production in Th 17 cells to maintain their pathogenicity in inducing intestinal inflammation. J Immunol. 2019;202:79-92. https://doi.org/10.4049/jimmunol.1701697.

[206]

Garcia Moreno AS, Guicciardi ME, Wixom AQ, et al. IL-17 signaling in primary sclerosing cholangitis patient-derived organoids. Hepatol Commun. 2024;8: e0454. https://doi.org/10.1097/HC9.0000000000000454.

[207]

Özdirik B, Müller T, Wree A, Tacke F, Sigal M. The role of microbiota in pri-mary sclerosing cholangitis and related biliary malignancies. Int J Mol Sci. 2021;22:6975. https://doi.org/10.3390/ijms22136975.

[208]

Poch T, Krause J, Casar C, et al. Single-cell atlas of hepatic T cells reveals expansion of liver-resident naive-like CD4(þ) T cells in primary sclerosing cholangitis. J Hepatol. 2021;75:414-423. https://doi.org/10.1016/j.jhep.2021.03.016.

PDF (4733KB)

252

Accesses

0

Citation

Detail

Sections
Recommended

/