New drug therapies for metabolic dysfunction-associated steatohepatitis

John Y. L. Chiang

Liver Research ›› 2025, Vol. 9 ›› Issue (2) : 94 -103.

PDF (1026KB)
Liver Research ›› 2025, Vol. 9 ›› Issue (2) :94 -103. DOI: 10.1016/j.livres.2025.01.001
Review article
research-article

New drug therapies for metabolic dysfunction-associated steatohepatitis

Author information +
History +
PDF (1026KB)

Abstract

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has rapidly increased world-wide to 30%, with increasing of type 2 diabetes (T2D) and obesity in last two decades. The spectrum of MASLD covers from simple hepatic steatosis to the progressive metabolic dysfunction-associated steatohepatitis (MASH) with or without fibrosis, cirrhosis and hepatocellular carcinoma. The MASLD symptoms include dyslipidemia, hyperglycemia, insulin resistance and obesity, the liver manifestations of metabolic syndrome. Treatment option for MASH fibrosis is limited. Since the discovery of bile acids as the endogenous ligands of farnesoid X receptor (FXR) in early 1990, bile acid and FXR based-drug therapies have been developed and tested in clinical trials for cholestatic liver diseases and MASH fibrosis. However, many of these drugs have unwanted side-effects and moderate efficacy in improving fibrosis. The US Food and Drug Administration has not approved any of bile acid- and FXR-based drugs for MASH fibrosis. Drug therapies alternative to bile acid derivatives for MASH have been in clinical trials. Recently, resmetirom, a liver-specific- and thyroid hormone receptor beta-selective agonist has been approved for MASH fibrosis. Glucagon-like peptide-1 receptor agonists also are in clinical trials for MASH. This review covers recent development of novel drug therapies for MASH fibrosis, T2D and obesity.

Keywords

Bile acids / Farnesoid X receptor (FXR) / Takeda G protein-coupled receptor 5 (TGR5) / Glucagon-like peptide-1 (GLP-1) / Metabolic dysfunction-associated steatotic liver disease (MASLD) / Metabolic dysfunction-associated steatohepatitis (MASH)

Cite this article

Download citation ▾
John Y. L. Chiang. New drug therapies for metabolic dysfunction-associated steatohepatitis. Liver Research, 2025, 9(2): 94-103 DOI:10.1016/j.livres.2025.01.001

登录浏览全文

4963

注册一个新账户 忘记密码

Author’s contributions

John Y. L. Chiang: Conceptualization, Writing-original draft, Writing-review & editing, Funding acquisition.

Declaration of competing interest

John Y. L. Chiang is an executive associate editor for liver research and was not involved in the editorial review or the deci-sion to publish this article. The author declares that there is no conflicts of interest.

Acknowledgements

This work was supported by National Institutes of Health (NIH) grants DK44442 and DK58379.

References

[1]

Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79: 1542-1556. https://doi.org/10.1016/j.jhep.2023.06.003.

[2]

Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77: 1335-1347. https://doi.org/10.1097/HEP.0000000000000004.

[3]

Kucukoglu O, Sowa JP, Mazzolini GD, Syn WK, Canbay A. Hepatokines and adipokines in NASH-related hepatocellular carcinoma. J Hepatol. 2021;74: 442-457. https://doi.org/10.1016/j.jhep.2020.10.030.

[4]

Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362-1365. https://doi.org/10.1126/science.284.5418.1362.

[5]

Chiang JYL. Bile acid metabolism and signaling in liver disease and therapy. Liver Res. 2017;1:3-9. https://doi.org/10.1016/j.livres.2017.05.001.

[6]

Chiang JYL, Ferrell JM. Bile acids as metabolic regulators and nutrient sensors. Annu Rev Nutr. 2019;39:175-200. https://doi.org/10.1146/annurev-nutr-082018-124344.

[7]

Chiang JYL, Ferrell JM. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol Cell Endocrinol. 2022;548:111618. https://doi.org/10.1016/j.mce.2022.111618.

[8]

Chiang JYL, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 2020;4:47-63. https://doi.org/10.1016/j.livres.2020.05.001.

[9]

Chiang J. Liver physiology: metabolism and detoxification. In: LM McManus, RN Mitchell, of Human Disease Pathobiology.eds. Elsevier; 2014:1770e1782. https://doi.org/10.1016/B978-0-12-386456-7.04202-7.

[10]

Parlati L, Régnier M, Guillou H, Postic C. New targets for NAFLD. JHEP Rep. 2021;3:100346. https://doi.org/10.1016/j.jhepr.2021.100346.

[11]

Tilg H, Adolph TE, Trauner M. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab. 2022;34:1700-1718. https://doi.org/10.1016/j.cmet.2022.09.017.

[12]

Adorini L, Trauner M. FXR agonists in NASH treatment. J Hepatol. 2023;79: 1317-1331. https://doi.org/10.1016/j.jhep.2023.07.034.

[13]

Gonzalez FJ, Jiang C, Patterson AD. An intestinal microbiota-farnesoid X re-ceptor axis modulates metabolic disease. Gastroenterology. 2016;151: 845-859. https://doi.org/10.1053/j.gastro.2016.08.057.

[14]

Xu Y, Li F, Zalzala M, et al. Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology. 2016;64:1072e1085. https://doi.org/10.1002/hep.28712.

[15]

Xie C, Jiang C, Shi J, et al. An intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes. 2017;66:613e626. https://doi.org/10.2337/db16-0663.

[16]

Guo C, Xie S, Chi Z, et al. Bile acids control inflammation and metabolic dis-order through inhibition of NLRP 3 inflammasome. Immunity. 2016;45: 802-816. https://doi.org/10.1016/j.immuni.2016.09.008.

[17]

Gong Z, Zhou J, Zhao S, et al. Chenodeoxycholic acid activates NLRP 3 inflammasome and contributes to cholestatic liver fibrosis. Oncotarget. 2016;7:83951-83963. https://doi.org/10.18632/oncotarget.13796.

[18]

Takahashi S, Tanaka N, Fukami T, et al. Role of farnesoid X receptor and bile acids in hepatic tumor development. Hepatol Commun. 2018;2:1567e1582. https://doi.org/10.1002/hep4.1263.

[19]

Sun L, Cai J, Gonzalez FJ. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol. 2021;18: 335-347. https://doi.org/10.1038/s41575-020-00404-2.

[20]

Zhang L, Xie C, Nichols RG, et al. Farnesoid X receptor signaling shapes the gut microbiota and controls hepatic lipid metabolism. mSystems. 2016;1:e00070-16. https://doi.org/10.1128/mSystems.00070-16.

[21]

Pandak WM, Heuman DM, Hylemon PB, Chiang JY, Vlahcevic ZR. Failure of intravenous infusion of taurocholate to down-regulate cholesterol 7 alpha-hydroxylase in rats with biliary fistulas. Gastroenterology. 1995;108: 533-544. https://doi.org/10.1016/0016-5085(95)90083-7.

[22]

Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2: 217-225. https://doi.org/10.1016/j.cmet.2005.09.001.

[23]

Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid re-ceptor FXR is a modulator of intestinal innate immunity. J Immunol. 2009;183: 6251-6261. https://doi.org/10.4049/jimmunol.0803978.

[24]

Li F, Jiang C, Krausz KW, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun. 2013;4:2384. https://doi.org/10.1038/ncomms3384.

[25]

Jiang C, Xie C, Li F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest. 2015;125:386-402. https://doi.org/10.1172/JCI76738.

[26]

Jiang C, Xie C, Lv Y, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun. 2015;6:10166. https://doi.org/10.1038/ncomms10166.

[27]

Sun L, Xie C, Wang G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24:1919-1929. https://doi.org/10.1038/s41591-018-0222-4.

[28]

Fang S, Suh JM, Reilly SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21:159e165. https://doi.org/10.1038/nm.3760.

[29]

Pathak P, Xie C, Nichols RG, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology. 2018;68:1574-1588. https://doi.org/10.1002/hep.29857.

[30]

Carino A, Biagioli M, Marchianò S, et al. Ursodeoxycholic acid is a GPBAR1 agonist and resets liver/intestinal FXR signaling in a model of diet-induced dysbiosis and NASH. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864: 1422-1437. https://doi.org/10.1016/j.bbalip.2019.07.006.

[31]

Keitel V, Cupisti K, Ullmer C, Knoefel WT, Kubitz R, Häussinger D. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology. 2009;50:861-870. https://doi.org/10.1002/hep.23032.

[32]

Keitel V, Häussinger D. Role of TGR5 (GPBAR1) in liver disease. Semin Liver Dis. 2018;38:333e339. https://doi.org/10.1055/s-0038-1669940.

[33]

Pathak P, Liu H, Boehme S, et al. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. J Biol Chem. 2017;292:11055-11069. https://doi.org/10.1074/jbc.M117.784322.

[34]

Katsuma S, Hirasawa A, Tsujimoto G.Bile acids promote glucagon-like pep-tide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329:386-390. https://doi.org/10.1016/j.bbrc.2005.01.139.

[35]

Fiorucci S, Mencarelli A, Palladino G, Cipriani S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol Sci. 2009;30:570-580. https://doi.org/10.1016/j.tips.2009.08.001.

[36]

Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing con-trols glucose homeostasis. Cell Metab. 2009;10:167-177. https://doi.org/10.1016/j.cmet.2009.08.001.

[37]

Shi Y, Su W, Zhang L, et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP 3 inflammasome activation. Front Immunol. 2021;11:609060. https://doi.org/10.3389/fimmu.2020.609060.

[38]

van Nierop FS, Scheltema MJ, Eggink HM, et al. Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol. 2017;5: 224-233. https://doi.org/10.1016/S2213-8587(16)30155-3.

[39]

Deutschmann K, Reich M, Klindt C, et al. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1319-1325. https://doi.org/10.1016/j.bbadis.2017.08.021.

[40]

Keitel V, Stindt J, Häussinger D. Bile acid-activated receptors: GPBAR1 (TGR5) and other G protein-coupled receptors. Handb Exp Pharmacol. 2019;256: 19-49. https://doi.org/10.1007/164_2019_230.

[41]

Makki K, Brolin H, Petersen N, et al. 6a-hydroxylated bile acids mediate TGR5 signalling to improve glucose metabolism upon dietary fiber sup-plementation in mice. Gut. 2023;72:314-324. https://doi.org/10.1136/gutjnl-2021-326541.

[42]

Reich M, Deutschmann K, Sommerfeld A, et al. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut. 2016;65: 487-501. https://doi.org/10.1136/gutjnl-2015-309458.

[43]

Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998;101:515-520. https://doi.org/10.1172/JCI990.

[44]

McGavigan AK, Garibay D, Henseler ZM, et al. TGR5 contributes to glucor-egulatory improvements after vertical sleeve gastrectomy in mice. Gut. 2017;66:226-234. https://doi.org/10.1136/gutjnl-2015-309871.

[45]

Klindt C, Reich M, Hellwig B, et al. The G protein-coupled bile acid receptor TGR5 (Gpbar1) modulates endothelin-1 signaling in liver. Cells. 2019;8:1467. https://doi.org/10.3390/cells8111467.

[46]

Holter MM, Chirikjian MK, Govani VN, Cummings BP. TGR5 signaling in he-patic metabolic health. Nutrients. 2020;12:2598. https://doi.org/10.3390/nu12092598.

[47]

Castellanos-Jankiewicz A, Guzmán-Quevedo O, Fénelon VS, et al. Hypotha-lamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 2021;33: 1483e 1492 (e10). https://doi.org/10.1016/j.cmet.2021.04.009.

[48]

Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404:661-671. https://doi.org/10.1038/35007534.

[49]

Alcantara IC, Tapia APM, Aponte Y, Krashes MJ. Acts of appetite: neural cir-cuits governing the appetitive, consummatory, and terminating phases of feeding. Nat Metab. 2022;4:836e847. https://doi.org/10.1038/s42255-022-00611-y.

[50]

Ahn BH, Kim M, Kim SY. Brain circuits for promoting homeostatic and non-homeostatic appetites. Exp Mol Med. 2022;54:349-357. https://doi.org/10.1038/s12276-022-00758-4.

[51]

Aron-Wisnewsky J, Gaborit B, Dutour A, Clement K. Gut microbiota and non-alcoholic fatty liver disease: new insights. Clin Microbiol Infect. 2013;19: 338-348. https://doi.org/10.1111/1469-0691.12140.

[52]

Joyce SA, Gahan CG. The gut microbiota and the metabolic health of the host. Curr Opin Gastroenterol. 2014;30:120-127. https://doi.org/10.1097/MOG.0000000000000039.

[53]

Aron-Wisnewsky J, Vigliotti C, Witjes J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol. 2020;17:279e297. https://doi.org/10.1038/s41575-020-0269-9.

[54]

Verkade E, Shen W, Hovingh MV, et al. Gut microbiota depletion aggravates bile acid-induced liver pathology in mice with a human-like bile acid composition. Clin Sci (Lond). 2023;137:1637e1650. https://doi.org/10.1042/CS20230812.

[55]

Mouzaki M, Wang AY, Bandsma R, et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS One. 2016;11:e0151829. https://doi.org/10.1371/journal.pone.0151829.

[56]

Shen F, Zheng RD, Sun XQ, Ding WJ, Wang XY, Fan JG. Gut microbiota dys-biosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int. 2017;16:375e381. https://doi.org/10.1016/S1499-3872(17)60019-5.

[57]

David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559-563. https://doi.org/10.1038/nature12820.

[58]

Devkota S, Wang Y, Musch MW, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature. 2012;487: 104-108. https://doi.org/10.1038/nature11225.

[59]

Bozadjieva N, Heppner KM, Seeley RJ. Targeting FXR and FGF 19 to treat metabolic diseases-lessons learned from bariatric surgery. Diabetes. 2018;67: 1720-1728. https://doi.org/10.2337/dbi17-0007.

[60]

Lee Y, Doumouras AG, Yu J, et al. Complete resolution of nonalcoholic fatty liver disease after bariatric surgery: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2019;17:1040e 1060 (e11). https://doi.org/10.1016/j.cgh.2018.10.017.

[61]

Dao MC, Belda E, Prifti E, et al. Akkermansia muciniphila abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. Am J Physiol Endocrinol Metab. 2019;317: E446eE459. https://doi.org/10.1152/ajpendo.00140.2019.

[62]

Albaugh VL, Banan B, Antoun J, et al. Role of bile acids and GLP-1 in mediating the metabolic improvements of bariatric surgery. Gastroenterology. 2019;156: 1041e 1051 (e4). https://doi.org/10.1053/j.gastro.2018.11.017.

[63]

Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509:183-188. https://doi.org/10.1038/nature13135.

[64]

Risstad H, Kristinsson JA, Fagerland MW, et al. Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized clinical trial. Surg Obes Relat Dis. 2017;13:1544-1553. https://doi.org/10.1016/j.soard.2017.05.024.

[65]

Puri P, Daita K, Joyce A, et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology. 2018;67:534-548. https://doi.org/10.1002/hep.29359.

[66]

Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30:332e338. https://doi.org/10.1097/MOG.0000000000000057.

[67]

Ruuskanen MO, Åberg F, Männistö V, et al. Links between gut microbiome composition and fatty liver disease in a large population sample. Gut Microbes. 2021;13:1e22. https://doi.org/10.1080/19490976.2021.1888673.

[68]

Govaere O, Cockell S, Tiniakos D, et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steato-hepatitis and fibrosis. Sci Transl Med. 2020;12:eaba4448. https://doi.org/10.1126/scitranslmed.aba4448.

[69]

Zheng X, Chen T, Zhao A, et al. Hyocholic acid species as novel biomarkers for metabolic disorders. Nat Commun. 2021;12:1487. https://doi.org/10.1038/s41467-021-21744-w.

[70]

Chaudhari SN, Luo JN, Harris DA, et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe. 2021;29:408e 424 (e7). https://doi.org/10.1016/j.chom.2020.12.004.

[71]

Chaudhari SN, Harris DA, Aliakbarian H, et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects. Nat Chem Biol. 2021;17: 20-29. https://doi.org/10.1038/s41589-020-0604-z.

[72]

Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther. 2022;237: 108238. https://doi.org/10.1016/j.pharmthera.2022.108238.

[73]

Chiang JYL, Ferrell JM. Bile acid biology, pathophysiology, and therapeutics. Clin Liver Dis (Hoboken). 2020;15:91-94. https://doi.org/10.1002/cld.861.

[74]

Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol. 2020;318: G554eG573. https://doi.org/10.1152/ajpgi.00223.2019.

[75]

Mudaliar S, Henry RR, Sanyal AJ, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology. 2013;145:574e 582 (e1). https://doi.org/10.1053/j.gastro.2013.05.042.

[76]

Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear re-ceptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956-965. https://doi.org/10.1016/S0140-6736(14)61933-4.

[77]

Huesmann M, Huesmann T, Osada N, Phan NQ, Kremer AE, Ständer S. Cholestatic pruritus: a retrospective analysis on clinical characteristics and treatment response. J Dtsch Dermatol Ges. 2013;11:158e168. https://doi.org/10.1111/j.1610-0387.2012.08028.x.

[78]

Meixiong J, Vasavda C, Snyder SH, Dong X. MRGPRX4 is a G protein-coupled receptor activated by bile acids that may contribute to cholestatic pruritus. Proc Natl Acad Sci U S A. 2019;116:10525e10530. https://doi.org/10.1073/pnas.1903316116.

[79]

Patel K, Harrison SA, Elkhashab M, et al. Cilofexor, a nonsteroidal FXR agonist, in patients with noncirrhotic NASH: a phase 2 randomized controlled trial. Hepatology. 2020;72:58-71. https://doi.org/10.1002/hep.31205.

[80]

Hollenback D, Hambruch E, Fink G, et al. Development of cilofexor, an intestinally-biased farnesoid X receptor agonist, for the treatment of fatty liver disease. J Pharmacol Exp Ther. 2024;389:61-75. https://doi.org/10.1124/jpet.123.001900.

[81]

Trauner M, Gulamhusein A, Hameed B, et al. The nonsteroidal farnesoid X receptor agonist cilofexor (GS-9674) improves markers of cholestasis and liver injury in patients with primary sclerosing cholangitis. Hepatology. 2019;70:788e801. https://doi.org/10.1002/hep.30509.

[82]

Camilleri M, Nord SL, Burton D, et al. Randomised clinical trial: significant biochemical and colonic transit effects of the farnesoid X receptor agonist tropifexor in patients with primary bile acid diarrhoea. Aliment Pharmacol Ther. 2020;52:808-820. https://doi.org/10.1111/apt.15967.

[83]

Loomba R, Noureddin M, Kowdley KV, et al. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH. Hepatology. 2021;73:625e643. https://doi.org/10.1002/hep.31622.

[84]

Anstee QM, Lucas KJ, Francque S, et al. Tropifexor plus cenicriviroc combi-nation versus monotherapy in nonalcoholic steatohepatitis: results from the phase 2b TANDEM study. Hepatology. 2023;78:1223e1239. https://doi.org/10.1097/HEP.0000000000000439.

[85]

Sanyal AJ, Lopez P, Lawitz EJ, et al. Tropifexor for nonalcoholic steatohepatitis: an adaptive, randomized, placebo-controlled phase 2a/b trial. Nat Med. 2023;29:392-400. https://doi.org/10.1038/s41591-022-02200-8.

[86]

Zhou M, Wang X, Phung V, et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res. 2014;74: 3306-3316. https://doi.org/10.1158/0008-5472.CAN-14-0208.

[87]

Harrison SA, Rossi SJ, Paredes AH, et al. NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis. Hep-atology. 2020;71:1198-1212. https://doi.org/10.1002/hep.30590.

[88]

Potthoff MJ, Inagaki T, Satapati S, et al. FGF 21 induces PGC-1alpha and reg-ulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A. 2009;106:10853-10858. https://doi.org/10.1073/pnas.0904187106.

[89]

Bookout AL, de Groot MH, Owen BM, et al. FGF 21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 2013;19: 1147-1152. https://doi.org/10.1038/nm.3249.

[90]

Talukdar S, Owen BM, Song P, et al. FGF 21 regulates sweet and alcohol preference. Cell Metab. 2016;23:344-349. https://doi.org/10.1016/j.cmet.2015.12.008.

[91]

Talukdar S, Zhou Y, Li D, et al. A long-acting FGF 21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 2016;23:427-440. https://doi.org/10.1016/j.cmet.2016.02.001.

[92]

Flippo KH, Trammell SAJ, Gillum MP, et al. FGF 21 suppresses alcohol con-sumption through an amygdalo-striatal circuit. Cell Metab. 2022;34:317e 328 (e6). https://doi.org/10.1016/j.cmet.2021.12.024.

[93]

Charles ED, Neuschwander-Tetri BA, Pablo Frias J, et al. Pegbelfermin (BMS-986036), PEGylated FGF21, in patients with obesity and type 2 diabetes: re-sults from a randomized phase 2 study. Obesity (Silver Spring). 2019;27: 41-49. https://doi.org/10.1002/oby.22344.

[94]

Loomba R, Sanyal AJ, Kowdley KV, et al. Randomized, controlled trial of the FGF 21 analogue pegozafermin in NASH. N Engl J Med. 2023;389:998-1008. https://doi.org/10.1056/NEJMoa2304286.

[95]

Harrison SA, Rolph T, Knott K, Dubourg J. FGF 21 agonists: an emerging therapeutic for metabolic dysfunction-associated steatohepatitis and beyond. J Hepatol. 2024;81:562-576. https://doi.org/10.1016/j.jhep.2024.04.034.

[96]

Alkhouri N. Thyromimetics as emerging therapeutic agents for nonalcoholic steatohepatitis: rationale for the development of resmetirom (MGL-3196). Expert Opin Investig Drugs. 2020;29:99e101. https://doi.org/10.1080/13543784.2020.1708899.

[97]

Grover GJ, Mellström K, Ye L, et al. Selective thyroid hormone receptor-beta activation: a strategy for reduction of weight, cholesterol, and lipoprotein(a) with reduced cardiovascular liability. Proc Natl Acad Sci U S A. 2003;100: 10067-10072. https://doi.org/10.1073/pnas.1633737100.

[98]

Kelly MJ, Pietranico-Cole S, Larigan JD, et al. Discovery of 2-[3,5-dichloro-4-(5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yloxy)phenyl]-3,5-dioxo-2,3,4,5-tetrahydro[1,2,4]triazine-6-carbonitrile ( MGL-3196), a highly selective thy-roid hormone receptor b agonist in clinical trials for the treatment of dysli-pidemia. J Med Chem. 2014;57:3912-3923. https://doi.org/10.1021/jm4019299.

[99]

Haeusler RA, Pratt-Hyatt M, Welch CL, Klaassen CD, Accili D. Impaired gen-eration of 12-hydroxylated bile acids links hepatic insulin signaling with dyslipidemia. Cell Metab. 2012;15:65e74. https://doi.org/10.1016/j.cmet.2011.11.010.

[100]

Sun K, Zhu NL, Huang SL, et al. A new mechanism of thyroid hormone re-ceptor b agonists ameliorating nonalcoholic steatohepatitis by inhibiting in-testinal lipid absorption via remodeling bile acid profiles. Acta Pharmacol Sin. 2024;45:2134-2148. https://doi.org/10.1038/s41401-024-01303-x.

[101]

Harrison SA, Bashir MR, Guy CD, et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2019;394:2012-2024. https://doi.org/10.1016/S0140-6736(19)32517-6.

[102]

Harrison SA, Bashir M, Moussa SE, et al. Effects of resmetirom on noninvasive endpoints in a 36-week phase 2 active treatment extension study in patients with NASH. Hepatol Commun. 2021;5:573-588. https://doi.org/10.1002/hep4.1657.

[103]

Harrison SA, Taub R, Neff GW, et al. Resmetirom for nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled phase 3 trial. Nat Med. 2023;29:2919e2928. https://doi.org/10.1038/s41591-023-02603-1.

[104]

Noureddin M, Charlton MR, Harrison SA, et al. Expert panel recommenda-tions: practical clinical applications for initiating and monitoring resmetirom in patients with MASH/NASH and moderate to noncirrhotic advanced fibrosis. Clin Gastroenterol Hepatol. 2024;22:2367-2377. https://doi.org/10.1016/j.cgh.2024.07.003.

[105]

Kokkorakis M, Boutari C, Hill MA, et al. Resmetirom, the first approved drug for the management of metabolic dysfunction-associated steatohepatitis: trials, opportunities, and challenges. Metabolism. 2024;154:155835. https://doi.org/10.1016/j.metabol.2024.155835.

[106]

Harrison SA, Bedossa P, Guy CD, et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N Engl J Med. 2024;390:497-509. https://doi.org/10.1056/NEJMoa2309000.

[107]

Drucker DJ, Holst JJ. The expanding incretin universe: from basic biology to clinical translation. Diabetologia. 2023;66:1765-1779. https://doi.org/10.1007/s00125-023-05906-7.

[108]

Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) re-ceptor agonists and neuroinflammation: implications for neurodegenerative disease treatment. Pharmacol Res. 2022;186:106550. https://doi.org/10.1016/j.phrs.2022.106550.

[109]

Yabut JM, Drucker DJ. Glucagon-like peptide-1 receptor-based therapeutics for metabolic liver disease. Endocr Rev. 2023;44:14e32. https://doi.org/10.1210/endrev/bnac018.

[110]

Wong CK, McLean BA, Baggio LL, et al. Central glucagon-like peptide 1 re-ceptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab. 2024;36:130e 143 (e5). https://doi.org/10.1016/j.cmet.2023.11.009.

[111]

Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Pre-served incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 dia-betes mellitus. J Clin Invest. 1993;91:301-307. https://doi.org/10.1172/JCI116186.

[112]

Nauck MA, Kleine N, Orskov C, Holst JJ, Willms B, Creutzfeldt W. Normaliza-tion of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993;36:741-744. https://doi.org/10.1007/BF00401145.

[113]

Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol Metab. 2021;46:101090. https://doi.org/10.1016/j.molmet.2020.101090.

[114]

Flint A, Andersen G, Hockings P, et al. Randomised clinical trial: semaglutide versus placebo reduced liver steatosis but not liver stiffness in subjects with non-alcoholic fatty liver disease assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2021;54:1150-1161. https://doi.org/10.1111/apt.16608.

[115]

Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17:819-837. https://doi.org/10.1016/j.cmet.2013.04.008.

[116]

Htike ZZ, Zaccardi F, Papamargaritis D, Webb DR, Khunti K, Davies MJ. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a systematic review and mixed-treatment comparison analysis. Diabetes Obes Metab. 2017;19:524-536. https://doi.org/10.1111/dom.12849.

[117]

Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab. 2021;46:101102. https://doi.org/10.1016/j.molmet.2020.101102.

[118]

Drucker DJ. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab. 2022;57:101351. https://doi.org/10.1016/j.molmet.2021.101351.

[119]

Aldawsari M, Almadani FA, Almuhammadi N, Algabsani S, Alamro Y, Aldhwayan M. The efficacy of GLP-1 analogues on appetite parameters, gastric emptying, food preference and taste among adults with obesity: sys-tematic review of randomized controlled trials. Diabetes Metab Syndr Obes. 2023;16:575e595. https://doi.org/10.2147/DMSO.S387116.

[120]

Kadouh H, Chedid V, Halawi H, et al. GLP-1 analog modulates appetite, taste preference, gut hormones, and regional body fat stores in adults with obesity. J Clin Endocrinol Metab. 2020;105:1552-1563. https://doi.org/10.1210/cli-nem/dgz140.

[121]

Nonogaki K, Kaji T. The GLP-1 receptor agonist liraglutide decreases primary bile acids and serotonin in the colon independently of feeding in mice. Int J Mol Sci. 2024;25:7784. https://doi.org/10.3390/ijms25147784.

[122]

Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387: 679-690. https://doi.org/10.1016/S0140-6736(15)00803-X.

[123]

Carino A, Cipriani S, Marchianò S, et al. BAR502, a dual FXR and GPBAR1 agonist, promotes browning of white adipose tissue and reverses liver stea-tosis and fibrosis. Sci Rep. 2017;7:42801. https://doi.org/10.1038/srep42801.

[124]

Day JW, Ottaway N, Patterson JT, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009;5:749e757. https://doi.org/10.1038/nchembio.209.

[125]

Day JW, Gelfanov V, Smiley D, et al. Optimization of co-agonism at GLP-1 and glucagon receptors to safely maximize weight reduction in DIO-rodents. Biopolymers. 2012;98:443e450. https://doi.org/10.1002/bip.22072.

[126]

Scheen AJ. Dual GIP/GLP-1 receptor agonists: new advances for treating type-2 diabetes. Ann Endocrinol (Paris). 2023;84:316-321. https://doi.org/10.1016/j.ando.2022.12.423.

[127]

Bergmann NC, Lund A, Gasbjerg LS, et al. Effects of combined GIP and GLP-1 infusion on energy intake, appetite and energy expenditure in overweight/obese individuals: a randomised, crossover study. Diabetologia. 2019;62: 665-675. https://doi.org/10.1007/s00125-018-4810-0.

[128]

Loomba R, Hartman ML, Lawitz EJ, et al. Tirzepatide for metabolic dysfunction-associated steatohepatitis with liver fibrosis. N Engl J Med. 2024;391:299-310. https://doi.org/10.1056/NEJMoa2401943.

[129]

Vuppalanchi R, Loomba R, Sanyal AJ, et al. Randomised clinical trial: design of the SYNERGY-NASH phase 2b trial to evaluate tirzepatide as a treatment for metabolic dysfunction-associated steatohepatitis and modification of screening strategy to reduce screen failures. Aliment Pharmacol Ther. 2024;60: 17-32. https://doi.org/10.1111/apt.18042.

[130]

Sanyal AJ, Bedossa P, Fraessdorf M, et al. A phase 2 randomized trial of sur-vodutide in MASH and fibrosis. N Engl J Med. 2024;391:311e319. https://doi.org/10.1056/NEJMoa2401755.

[131]

Sidhu JK, Singh S. A new drug for obesity: tirzepatide. Endocr Metab Immune Disord Drug Targets. 2025; 25:267-270. https://doi.org/10.2174/0118715303319530240703111013.

[132]

Corrao S, Pollicino C, Maggio D, Torres A, Argano C. Tirzepatide against obesity and insulin-resistance: pathophysiological aspects and clinical evidence. Front Endo-crinol (Lausanne). 2024;15:1402583. https://doi.org/10.3389/fendo.2024.1402583.

[133]

Rodriguez PJ, Goodwin Cartwright BM, Gratzl S, et al. Semaglutide vs Tirze-patide for weight loss in adults with overweight or obesity. JAMA Intern Med. 2024;184:1056-1064. https://doi.org/10.1001/jamainternmed.2024.2525.

[134]

Shankar SS, Daniels SJ, Robertson D, et al. Safety and efficacy of novel incretin co-agonist cotadutide in biopsy-proven noncirrhotic MASH with fibrosis. Clin Gastroenterol Hepatol. 2024;22:1847e 1857 (e11). https://doi.org/10.1016/j.cgh.2024.04.017.

[135]

Mohanty I, Mannochio-Russo H, Schweer JV, et al. The underappreciated di-versity of bile acid modifications. Cell. 2024;187:1801e 1818 (e20). https://doi.org/10.1016/j.cell.2024.02.019.

[136]

Hang S, Paik D, Yao L, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143-148. https://doi.org/10.1038/s41586-019-1785-z.

[137]

Zheng X, Chen T, Jiang R, et al. Hyocholic acid species improve glucose ho-meostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 2021;33:791e 803 (e7). https://doi.org/10.1016/j.cmet.2020.11.017.

[138]

Sato Y, Atarashi K, Plichta DR, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021;599:458-464. https://doi.org/10.1038/s41586-021-03832-5.

PDF (1026KB)

133

Accesses

0

Citation

Detail

Sections
Recommended

/