Current status and new directions for hepatocellular carcinoma diagnosis

Jinqi Tu , Bo Wang , Xiaoming Wang , Kugeng Huo , Wanting Hu , Rongli Zhang , Jinyao Li , Shijie Zhu , Qionglin Liang , Shuxin Han

Liver Research ›› 2024, Vol. 8 ›› Issue (4) : 218 -236.

PDF (4922KB)
Liver Research ›› 2024, Vol. 8 ›› Issue (4) :218 -236. DOI: 10.1016/j.livres.2024.12.001
Review article
research-article

Current status and new directions for hepatocellular carcinoma diagnosis

Author information +
History +
PDF (4922KB)

Abstract

Liver cancer ranks as the sixth most common cancer globally, with hepatocellular carcinoma (HCC) accounting for approximately 75%-85% of cases. Most patients present with moderately advanced disease, while those with advanced HCC face limited and ineffective treatment options. Despite diagnostic efforts, no ideal tumor marker exists to date, highlighting the urgent clinical need for improved early detection of HCC. A key research objective is the development of assays that target specific pathways involved in HCC progression. This review explores the pathological origin and development of HCC, providing insights into the mechanistic rationale, clinical statistics, and the advantages and limitations of commonly used diagnostic tumor markers. Additionally, it discusses the potential of emerging biomarkers for early diagnosis and offers a brief overview of relevant assay methodologies. This review aims to summarize existing markers and investigate new ones, providing a basis for subsequent research.

Keywords

Hepatocellular carcinoma (HCC) / Tumor marker / Early detection / Pathological origin and development

Cite this article

Download citation ▾
Jinqi Tu, Bo Wang, Xiaoming Wang, Kugeng Huo, Wanting Hu, Rongli Zhang, Jinyao Li, Shijie Zhu, Qionglin Liang, Shuxin Han. Current status and new directions for hepatocellular carcinoma diagnosis. Liver Research, 2024, 8(4): 218-236 DOI:10.1016/j.livres.2024.12.001

登录浏览全文

4963

注册一个新账户 忘记密码

Authors’ contributions

Jinqi Tu: Writing e review & editing, Writing e original draft, Resources, Methodology, Conceptualization. Bo Wang: Writing e review & editing, Writing e original draft, Resources, Methodol-ogy, Conceptualization. Xiaoming Wang: Writing e review & editing, Writing e original draft, Methodology, Funding acquisi-tion, Conceptualization. Kugeng Huo: Writing e review & editing, Writing e original draft, Methodology, Conceptualization. Wanting Hu: Writing e review & editing, Writing e original draft, Methodology, Conceptualization. Rongli Zhang: Writing e review & editing, Methodology, Conceptualization. Jinyao Li: Writing e review & editing, Writing e original draft, Methodology, Conceptualization. Shijie Zhu: Writing e review & editing, Methodology, Conceptualization. Qionglin Liang: Writing e re-view & editing, Methodology, Conceptualization. Shuxin Han: Writing e review & editing, Resources, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The company affiliated with the authors did not sponsor this research. Any author’ s position at any company has no influence on the study. Personal opinions do not represent the views of the company. The authors declare that there are no conflicts of interest.

Acknowledgements

This work is supported by the National Natural Science Foun-dation of China (No. 32171167), Anhui Province Educational Natural Science Project (No. 2023AH040254), and Tianchi Talent Intro-duction Plan Innovative Leader of Xinjiang Ugyur Autonomous Region (No. 51052401403).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.livres.2024.12.001.

References

[1]

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022; 72:7-33. https://doi.org/10.3322/caac.21708.

[2]

Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 coun-tries. CA Cancer J Clin. 2024; 74:229-263. https://doi.org/10.3322/caac.21834.

[3]

Sriamporn S, Pisani P, Pipitgool V, Suwanrungruang K, Kamsa-ard S, Parkin DM. Prevalence of opisthorchis viverrini infection and incidence of cholangiocarcinoma in Khon Kaen, Northeast Thailand. Trop Med Int Health. 2004;9:588-594. https://doi.org/10.1111/j.1365-3156.2004.01234.x.

[4]

European Association For The Study Of The Liver; European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908-943. https://doi.org/10.1016/j.jhep.2011.12.001.

[5]

Castera L, Friedrich-Rust M, Loomba R. Noninvasive assessment of liver dis-ease in patients with nonalcoholic fatty liver disease. Gastroenterology. 2019;156:1264e 1281 (e4). https://doi.org/10.1053/j.gastro.2018.12.036.

[6]

Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the pathophysi-ology, diagnosis and treatment of non-alcoholic fatty liver disease. Metabolism. 2020;111S:154320. https://doi.org/10.1016/j.metabol.2020.154320.

[7]

Chuang YC, Tsai KN, Ou JJ. Pathogenicity and virulence of hepatitis B virus. Virulence. 2022;13:258-296. https://doi.org/10.1080/21505594.2022.2028483.

[8]

Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med. 2016;67:103-117. https://doi.org/10.1146/annurev-med-090514-013832.

[9]

Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol. 2013; 47 Suppl:S2eS6. https://doi.org/10.1097/MCG.0b013e3182872f29.

[10]

Benson AB, D’Angelica MI, Abbott DE, et al. Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19:541-565. https://doi.org/10.6004/jnccn.2021.0022.

[11]

Li J, Cheng ZJ, Liu Y, et al. Serum thioredoxin is a diagnostic marker for he-patocellular carcinoma. Oncotarget. 2015;6:9551-9563. https://doi.org/10.18632/oncotarget.3314.

[12]

Trevisani F, D’Intino PE, Morselli-Labate AM, et al. Serum alpha-fetoprotein for diagnosis of hepatocellular carcinoma in patients with chronic liver disease: influence of HBsAg and anti-HCV status. J Hepatol. 2001;34:570-575. https://doi.org/10.1016/s0168-8278(00)00053-2.

[13]

Zhang S, Liu Y, Chen J, et al. Autoantibody signature in hepatocellular carci-noma using seromics. J Hematol Oncol. 2020;13:85. https://doi.org/10.1186/s13045-020-00918-x.

[14]

Bruix J, Sherman M, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53: 1020-1022. https://doi.org/10.1002/hep.24199.

[15]

Choi JY, Jung SW, Kim HY, et al. Diagnostic value of AFP-L3 and PIVKA-II in hepatocellular carcinoma according to total-AFP. World J Gastroenterol. 2013;19:339-346. https://doi.org/10.3748/wjg.v19.i3.339.

[16]

Fang YS, Wu Q, Zhao HC, et al. Do combined assays of serum AFP, AFP-L3, DCP, GP73, and DKK-1 efficiently improve the clinical values of biomarkers in decision-making for hepatocellular carcinoma? A meta-analysis. Expert Rev Gastroenterol Hepatol. 2021;15:1065-1076. https://doi.org/10.1080/17474124.2021.1900731.

[17]

Yamamoto K, Imamura H, Matsuyama Y, et al. AFP, AFP-L3, DCP, and GP73 as markers for monitoring treatment response and recurrence and as surrogate markers of clinicopathological variables of HCC. J Gastroenterol. 2010;45: 1272-1282. https://doi.org/10.1007/s00535-010-0278-5.

[18]

Harris PS, Hansen RM, Gray ME, Massoud OI, McGuire BM, Shoreibah MG. Hepatocellular carcinoma surveillance: an evidence-based approach. World J Gastroenterol. 2019;25:1550-1559. https://doi.org/10.3748/wjg.v25.i13.1550.

[19]

Mancebo A, González-Diéguez ML, Cadahía V, et al. Annual incidence of he-patocellular carcinoma among patients with alcoholic cirrhosis and identifi-cation of risk groups. Clin Gastroenterol Hepatol. 2013;11:95-101. https://doi.org/10.1016/j.cgh.2012.09.007.

[20]

Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology. 2010;51:1972-1978. https://doi.org/10.1002/hep.23527.

[21]

Antoury C, Lopez R, Zein N, Stoller JK, Alkhouri N. Alpha-1 antitrypsin defi-ciency and the risk of hepatocellular carcinoma in end-stage liver disease. World J Hepatol. 2015;7:1427-1432. https://doi.org/10.4254/wjh.v7.i10.1427.

[22]

Jamwal R, Krishnan V, Kushwaha DS, Khurana R. Hepatocellular carcinoma in non-cirrhotic versus cirrhotic liver: a clinico-radiological comparative analysis. Abdom Radiol (NY). 2020;45:2378-2387. https://doi.org/10.1007/s00261-020-02561-z.

[23]

Calzadilla Bertot L, Adams LA. The natural course of non-alcoholic fatty liver disease. Int J Mol Sci. 2016;17:774. https://doi.org/10.3390/ijms17050774.

[24]

Mocan T, Sim-ao AL, Castro RE, et al. Liquid biopsies in hepatocellular carci-noma: are we winning? J Clin Med. 2020;9:1541. https://doi.org/10.3390/jcm9051541.

[25]

Lee TK, Guan XY, Ma S. Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol. 2022;19:26-44. https://doi.org/10.1038/s41575-021-00508-3.

[26]

Yang L, Inokuchi S, Roh YS, et al. Transforming growth factor-b signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology. 2013;144:1042e 1054 (e4). https://doi.org/10.1053/j.gastro.2013.01.056.

[27]

Li J, Han X, Yu X, et al. Clinical applications of liquid biopsy as prognostic and predictive biomarkers in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. J Exp Clin Cancer Res. 2018;37:213. https://doi.org/10.1186/s13046-018-0893-1.

[28]

Liu J, Ren L, Li S, et al. The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. 2021;11:2783-2797. https://doi.org/10.1016/j.apsb.2021.01.001.

[29]

Nie W, Yan L, Lee YH, Guha C, Kurland IJ, Lu H. Advanced mass spectrometry-based multi-omics technologies for exploring the pathogenesis of hepato-cellular carcinoma. Mass Spectrom Rev. 2016;35:331-349. https://doi.org/10.1002/mas.21439.

[30]

Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7:6. https://doi.org/10.1038/s41572-020-00240-3.

[31]

Mu X, Espa-nol-Su-ner R, Mederacke I, et al. Hepatocellular carcinoma origi-nates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest. 2015;125:3891-3903. https://doi.org/10.1172/JCI77995.

[32]

Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, mo-lecular class, and effects on patient prognosis. Gastroenterology. 2017;152: 745-761. https://doi.org/10.1053/j.gastro.2016.11.048.

[33]

Lazarevich NL, Fleishman DI. Tissue-specific transcription factors in progres-sion of epithelial tumors. Biochemistry (Mosc). 2008;73:573-591. https://doi.org/10.1134/s0006297908050106.

[34]

Lazarevich NL, Shavochkina DA, Fleishman DI, et al. Deregulation of hepato-cyte nuclear factor 4 (HNF4) as a marker of epithelial tumors progression. Exp Oncol. 2010;32:167-171.

[35]

Lowes KN, Croager EJ, Olynyk JK, Abraham LJ, Yeoh GC. Oval cell-mediated liver regeneration: role of cytokines and growth factors. J Gastroenterol Hep-atol. 2003;18:4-12. https://doi.org/10.1046/j.1440-1746.2003.02906.x.

[36]

Kaur S, Siddiqui H, Bhat MH. Hepatic progenitor cells in action: liver regen-eration or fibrosis? Am J Pathol. 2015;185:2342-2350. https://doi.org/.1016/j.ajpath.2015.06.004.

[37]

Stanger BZ. Cellular homeostasis and repair in the mammalian liver. Annu Rev Physiol. 2015;77:179-200. https://doi.org/10.1146/annurev-physiol-021113-170255.

[38]

Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18:40-55. https://doi.org/10.1038/s41575-020-0342-4.

[39]

Ceulemans A, Verhulst S, Van Haele M, et al. RNA-sequencing-based comparative analysis of human hepatic progenitor cells and their niche from alcoholic steatohepatitis livers. Cell Death Dis. 2017;8:e3164. https://doi.org/10.1038/cddis.2017.543.

[40]

Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116:769-778. https://doi.org/10.1016/s0092-8674(04)00255-7.

[41]

Theise ND.Gastrointestinal stem cells. III. Emergent themes of liver stem cell biology: niche, quiescence, self-renewal, and plasticity. Am J Physiol Gastrointest Liver Physiol. 2006;290:G189eG193. https://doi.org/10.1152/ajpgi.00041.2005.

[42]

Cao W, Chen K, Bolkestein M, et al. Dynamics of proliferative and quiescent stem cells in liver homeostasis and injury. Gastroenterology. 2017;153: 1133-1147. https://doi.org/10.1053/j.gastro.2017.07.006.

[43]

Akbari S, Kunter I, Azbazdar Y, et al. LGR5/R-Spo1/Wnt3a axis promotes stemness and aggressive phenotype in hepatoblast-like hepatocellular carci-noma cell lines. Cell Signal. 2021;82:109972. https://doi.org/10.1016/j. cellsig.2021.109972.

[44]

Li N, Nakauka-Ddamba A, Tobias J, Jensen ST, Lengner CJ. Mouse label-retaining cells are molecularly and functionally distinct from reserve intes-tinal stem cells. Gastroenterology. 2016;151:298e 310 (e7). https://doi.org/10.1053/j.gastro.2016.04.049.

[45]

Zhang H, Lin G, Qiu X, et al. Label retaining and stem cell marker expression in the developing rat urinary bladder. Urology. 2012; 79:746 (e1e6). https://doi.org/10.1016/j.urology.2011.10.051.

[46]

Liu H, Kim Y, Sharkis S, Marchionni L, Jang YY. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci Transl Med. 2011;3:82ra39. https://doi.org/10.1126/scitranslmed.3002376.

[47]

Shams S, Imran N, Afridi SG, Ayaz M, Khalil AAK, Nasir A. In vitro differenti-ation effect of CCL4-induced liver injured mice serum on bone marrow-derived mesenchymal stem cells toward hepatocytes like cells. Cell Tissue Bank. 2021;22:297-303. https://doi.org/10.1007/s10561-020-09878-5.

[48]

Liu YC, Yeh CT, Lin KH. Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells. 2020;9:1331. https://doi.org/10.3390/cells9061331.

[49]

Jun SY, Yoon HR, Yoon JY, et al. The human tor signaling regulator is the key indicator of liver cancer patients’ overall survival: TIPRL/LC3/CD133/CD 44 as potential biomarkers for early liver cancers. Cancers (Basel). 2021;13:2925. https://doi.org/10.3390/cancers13122925.

[50]

Sell S, Leffert HL. Liver cancer stem cells. J Clin Oncol. 2008;26:2800-2805. https://doi.org/10.1200/JCO.2007.15.5945.

[51]

Budzinska MA, Tu T, d’Avigdor WM, McCaughan GW, Luciani F, Shackel NA. Accumulation of deleterious passenger mutations is associated with the progression of hepatocellular carcinoma. PLoS One. 2016;11:e0162586. https://doi.org/10.1371/journal.pone.0162586.

[52]

Wurmbach E, Chen YB, Khitrov G, et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology. 2007;45: 938-947. https://doi.org/10.1002/hep.21622.

[53]

Kotoula V, Hytiroglou P, Pyrpasopoulou A, Saxena R, Thung SN, Papadimitriou CS. Expression of human telomerase reverse transcriptase in regenerative and precancerous lesions of cirrhotic livers. Liver. 2002;22: 57-69. https://doi.org/10.1046/j.0106-9543.2001.01594.x.

[54]

Nault JC, Mallet M, Pilati C, et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun. 2013;4:2218. https://doi.org/10.1038/ncomms3218.

[55]

Schulze K, Imbeaud S, Letouzé E, et al. Exome sequencing of hepato-cellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47:505-511. https://doi.org/10.1038/ng.3252.

[56]

Nault JC, Calderaro J, Di Tommaso L, et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the trans-formation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology. 2014;60:1983-1992. https://doi.org/10.1002/hep.27372.

[57]

Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision med-icine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15:599-616. https://doi.org/10.1038/s41571-018-0073-4.

[58]

Petrelli F, Manara M, Colombo S, et al. Hepatocellular carcinoma in patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis: HCC and steatosis or steatohepatitis. Neoplasia. 2022;30:100809. https://doi.org/10.1016/j.neo.2022.100809.

[59]

Schütte K, Bornschein J, Kahl S, et al. Delayed diagnosis of HCC with chronic alcoholic liver disease. Liver Cancer. 2012;1:257-266. https://doi.org/10.1159/000343840.

[60]

Petruzziello A. Epidemiology of hepatitis B virus (HBV) and hepatitis C virus (HCV) related hepatocellular carcinoma. Open Virol J. 2018;12:26-32. https://doi.org/10.2174/1874357901812010026.

[61]

Ojima H, Masugi Y, Tsujikawa H, et al. Early hepatocellular carcinoma with high-grade atypia in small vaguely nodular lesions. Cancer Sci. 2016;107: 543-550. https://doi.org/10.1111/cas.12893.

[62]

Desai A, Sandhu S, Lai JP, Sandhu DS. Hepatocellular carcinoma in non-cirrhotic liver: a comprehensive review. World J Hepatol. 2019;11:1-18. https://doi.org/10.4254/wjh.v11.i1.1.

[63]

Wen N, Cai Y, Li F, et al. The clinical management of hepatocellular carcinoma worldwide: a concise review and comparison of current guidelines: 2022 up-date. Biosci Trends. 2022;16:20-30. https://doi.org/10.5582/bst.2022.01061.

[64]

He J, Chen W, Shen H, et al. China guideline for liver cancer screening (2022, Beijing). Journal of Clinical Hepatology. 2022; 38:1739-1758. https://doi.org/10.3969/j.issn.1001-5256.2022.08.007.

[65]

Prospective suRveillance for very Early hepatoCellular cARcinoma(PreCar) expert panel. Expert consensus on early screening strategies for liver cancer in China. Zhonghua Gan Zang Bing Za Zhi. 2021;29:515-522. https://doi.org/10.3760/cma.j.cn501113-20210605-00264.

[66]

European Association For The Study Of The Liver; European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908-943. https://doi.org/10.1016/j.jhep.2011.12.001.

[67]

Luo P, Yin P, Hua R, et al. A Large-scale, multicenter serum metabolite biomarker identification study for the early detection of hepatocellular car-cinoma. Hepatology. 2018;67:662-675. https://doi.org/10.1002/hep.29561.

[68]

Huang S, Jiang F, Wang Y, et al. Diagnostic performance of tumor markers AFP and PIVKA-II in Chinese hepatocellular carcinoma patients. Tumour Biol. 2017;39:1010428317705763. https://doi.org/10.1177/1010428317705763.

[69]

Mansouri V, Razzaghi M, Nikzamir A, et al. Assessment of liver cancer bio-markers. Gastroenterol Hepatol Bed Bench. 2020; 13(Suppl 1):S29eS39.

[70]

Berretta M, Cavaliere C, Alessandrini L, et al. Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma: clinical and prognostic implications. Oncotarget. 2017;8:14192-14220. https://doi.org/10.18632/oncotarget.13929.

[71]

Zhao S, Long M, Zhang X, et al. The diagnostic value of the combination of Golgi protein 73, glypican-3 and alpha-fetoprotein in hepatocellular carci-noma: a diagnostic meta-analysis. Ann Transl Med. 2020;8:536. https://doi.org/10.21037/atm.2020.02.89.

[72]

Liu D, Luo Y, Chen L, et al. Diagnostic value of 5 serum biomarkers for he-patocellular carcinoma with different epidemiological backgrounds: a large-scale, retrospective study. Cancer Biol Med. 2021;18:256-270. https://doi.org/10.20892/j.issn.2095-3941.2020.0207.

[73]

Food and Drug Administration, HHS. Medical devices; immunology and microbiology devices; classification of AFP-L3% immunological test systems. Final rule. Fed Regist. 2005;70:57748-57750.

[74]

Khien VV, Mao HV, Chinh TT, et al. Clinical evaluation of lentil lectin-reactive alpha-fetoprotein-L 3 in histology-proven hepatocellular carcinoma. Int J Biol Markers. 2001;16:105-111. https://doi.org/10.1177/172460080101600204.

[75]

Leerapun A, Suravarapu SV, Bida JP, et al. The utility of Lens culinaris agglutinin-reactive alpha-fetoprotein in the diagnosis of hepatocellular car-cinoma: evaluation in a United States referral population. Clin Gastroenterol Hepatol. 2007;5:394. https://doi.org/10.1016/j.cgh.2006.12.005.-267.

[76]

Choi J, Kim GA, Han S, Lee W, Chun S, Lim YS. Longitudinal assessment of three serum biomarkers to detect very early-stage hepatocellular carcinoma. Hep-atology. 2019;69:1983-1994. https://doi.org/10.1002/hep.30233.

[77]

Zhou JM, Wang T, Zhang KH. AFP-L 3 for the diagnosis of early hepatocellular carcinoma: a meta-analysis. Medicine (Baltimore). 2021;100:e27673. https://doi.org/10.1097/MD.0000000000027673.

[78]

Marrero JA, Romano PR, Nikolaeva O, et al. GP73, a resident Golgi glycopro-tein, is a novel serum marker for hepatocellular carcinoma. J Hepatol. 2005;43:1007-1012. https://doi.org/10.1016/j.jhep.2005.05.028.

[79]

Volk ML, Hernandez JC, Su GL, Lok AS, Marrero JA. Risk factors for hepato-cellular carcinoma may impair the performance of biomarkers: a comparison of AFP, DCP, and AFP-L3. Cancer Biomark. 2007;3:79-87. https://doi.org/10.3233/cbm-2007-3202.

[80]

Masuzaki R, Karp SJ, Omata M. New serum markers of hepatocellular carci-noma. Semin Oncol. 2012;39:434-439. https://doi.org/10.1053/j.seminoncol.2012.05.009.

[81]

Xu D, Su C, Sun L, Gao Y, Li Y. Performance of serum glypican 3 in diagnosis of hepatocellular carcinoma: a meta-analysis. Ann Hepatol. 2019;18:58-67. https://doi.org/10.5604/01.3001.0012.7863.

[82]

Shirakawa H, Suzuki H, Shimomura M, et al. Glypican-3 expression is corre-lated with poor prognosis in hepatocellular carcinoma. Cancer Sci. 2009;100: 1403-1407. https://doi.org/10.1111/j.1349-7006.2009.01206.x.

[83]

Xing H, Qiu H, Ding X, et al. Clinical performance of a-L-fucosidase for early detection of hepatocellular carcinoma. Biomark Med. 2019;13:545-555. https://doi.org/10.2217/bmm-2018-0414.

[84]

Li J, Chen X, Dai M, Huang S, Chen J, Dai S. Diagnostic accuracy of osteopontin plus alpha-fetoprotein in the hepatocellular carcinoma: a meta-analysis. Clin Res Hepatol Gastroenterol. 2017;41:543-553. https://doi.org/10.1016/j.clinre.2017.01.010.

[85]

Johnson PJ, Poon TC, Hjelm NM, Ho CS, Blake C, Ho SK. Structures of disease-specific serum alpha-fetoprotein isoforms. Br J Cancer. 2000;83:1330-1337. https://doi.org/10.1054/bjoc.2000.1441.

[86]

Deutsch HF. Chemistry and biology of alpha-fetoprotein. Adv Cancer Res. 1991;56:253-312. https://doi.org/10.1016/s0065-230x(08)60483-2.

[87]

Clark T, Maximin S, Meier J, Pokharel S, Bhargava P. Hepatocellular carcinoma: review of epidemiology, screening, imaging diagnosis, response assessment, and treatment. Curr Probl Diagn Radiol. 2015;44:479-486. https://doi.org/10.1067/j.cpradiol.2015.04.004.

[88]

El-Bahrawy M. Alpha-fetoprotein-producing non-germ cell tumours of the female genital tract. Eur J Cancer. 2010;46:1317-1322. https://doi.org/10.1016/j.ejca.2010.01.028.

[89]

Murray MJ, Nicholson JC. a-Fetoprotein. Arch Dis Child Educ Pract Ed. 2011;96:141-147. https://doi.org/10.1136/adc.2011.213181.

[90]

Wu JT, Book L, Sudar K. Serum alpha fetoprotein (AFP) levels in normal infants. Pediatr Res. 1981;15:50-52. https://doi.org/10.1203/00006450-198101000-00012.

[91]

Taketa K. Alpha-fetoprotein: reevaluation in hepatology. Hepatology. 1990;12: 1420-1432. https://doi.org/10.1002/hep.1840120625.

[92]

Saffroy R, Pham P, Reffas M, Takka M, Lemoine A, Debuire B. New perspectives and strategy research biomarkers for hepatocellular carcinoma. Clin Chem Lab Med. 2007;45:1169-1179. https://doi.org/10.1515/CCLM.2007.262.

[93]

Thyagarajan MS, Sharif K. Space occupying lesions in the liver. Indian J Pediatr. 2016;83:1291-1302. https://doi.org/10.1007/s12098-016-2240-x.

[94]

de Knegt RJ, Potthoff A, Wirth T. Management of benign liver tumors. Inter-nist(Berl). 2020;61:140-146. https://doi.org/10.1007/s00108-019-00736-5.

[95]

Lee J, Choi J, Kang S, et al. Hepatogenic potential and liver regeneration effect of human liver-derived mesenchymal-like stem cells. Cells. 2020;9:1521. https://doi.org/10.3390/cells9061521.

[96]

Engelhardt NV, Baranov VN, Lazareva MN, Goussev AI. Ultrastructural local-isation of alpha-fetoprotin (AFP) in regenerating mouse liver poisoned with CCL4. 1. Reexpression of AFP in differentiated hepatocytes. Histochemistry. 1984;80:401-407. https://doi.org/10.1007/BF00495425.

[97]

Alpert E. Alpha-1-fetoprotein. Clin Gastroenterol. 1976;5:639-644.

[98]

Oze T, Hiramatsu N, Yakushijin T, et al. Post-treatment levels of a-fetoprotein predict incidence of hepatocellular carcinoma after interferon therapy. Clin Gastroenterol Hepatol. 2014;12:1186-1195. https://doi.org/10.1016/j.cgh.2013.11.033.

[99]

Enjoji M, Kotoh K, Kato M, et al. Therapeutic effect of ARBs on insulin resis-tance and liver injury in patients with NAFLD and chronic hepatitis C: a pilot study. Int J Mol Med. 2008;22:521-527.

[100]

Abdelhamed W, El-Kassas M. Hepatocellular carcinoma recurrence: pre-dictors and management. Liver Res. 2023;7:321-332. https://doi.org/10.1016/j.livres.2023.11.004.

[101]

Lu X, Deng S, Xu J, et al. Combination of AFP vaccine and immune checkpoint inhibitors slows hepatocellular carcinoma progression in preclinical models. J Clin Invest. 2023;133:e163291. https://doi.org/10.1172/JCI163291.

[102]

Zhao J, Guo LY, Yang JM, Jia JW. Sublingual vein parameters AFP, AFP-L3, and GP73 in patients with hepatocellular carcinoma. Genet Mol Res. 2015;14: 7062-7067. https://doi.org/10.4238/2015.June.26.16.

[103]

Li D, Mallory T, Satomura S. AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta. 2001;313:15-19. https://doi.org/10.1016/s0009-8981(01)00644-1.

[104]

Yamamoto R, Azuma M, Wakui Y, et al. Alpha-fetoprotein microheterogeneity: a potential biochemical marker for Down’ssyndrome. Clin Chim Acta. 2001;304:137-141. https://doi.org/10.1016/s0009-8981(00)00381-8.

[105]

Ibrahim HM, Elghannam MZ, Elkhawaga OAY, El-Sokkary AMA. Evaluation of serum alpha fetoprotein-L3 as an accuracy novel biomarker for the early diagnosis of hepatocellular carcinoma in Egyptian patients. Saudi J Biol Sci. 2021;28:5760-5764. https://doi.org/10.1016/j.sjbs.2021.06.020.

[106]

Hu L, Li L, Xie H, Gu Y, Peng T. The Golgi localization of GOLPH2 (GP73/GOLM1) is determined by the transmembrane and cytoplamic sequences. PLoS One. 2011;6:e28207. https://doi.org/10.1371/journal.pone.0028207.

[107]

Kladney RD, Bulla GA, Guo L, et al. GP73, a novel Golgi-localized protein upregulated by viral infection. Gene. 2000;249:53-65. https://doi.org/10.1016/s0378-1119(00)00136-0.

[108]

Liang R, Liu Z, Piao X, et al. Research progress on GP 73 in malignant tumors. OncoTargets Ther. 2018;11:7417-7421. https://doi.org/10.2147/OTT.S181239.

[109]

Jiang K, Li W, Shang S, et al. Aberrant expression of Golgi protein 73 is indicative of a poor outcome in hepatocellular carcinoma. Oncol Rep. 2016;35: 2141-2150. https://doi.org/10.3892/or.2016.4601.

[110]

Bachert C, Fimmel C, Linstedt AD. Endosomal trafficking and proprotein convertase cleavage of cis Golgi protein GP73 produces marker for hepato-cellular carcinoma. Traffic. 2007;8:1415-1423. https://doi.org/10.1111/j.1600-0854.2007.00621.x.

[111]

Kladney RD, Cui X, Bulla GA, Brunt EM, Fimmel CJ. Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. Hep-atology. 2002;35:1431-1440. https://doi.org/10.1053/jhep.2002.32525.

[112]

Wei J, Fang D. Endoplasmic Reticulum stress signaling and the pathogenesis of hepatocarcinoma. Int J Mol Sci. 2021;22:1799. https://doi.org/10.3390/ijms22041799.

[113]

Choi YM, Lee SY, Kim BJ. Naturally occurring hepatitis B virus mutations leading to endoplasmic reticulum stress and their contribution to the pro-gression of hepatocellular carcinoma. Int J Mol Sci. 2019;20:597. https://doi.org/10.3390/ijms20030597.

[114]

Wei C, Yang X, Liu N, et al. Tumor microenvironment regulation by the endoplasmic reticulum stress transmission mediator Golgi protein 73 in mice. Hepatology. 2019;70:851-870. https://doi.org/10.1002/hep.30549.

[115]

Zhang Z, Leng XK, Zhai YY, et al. Deficiency of ASGR1 promotes liver injury by increasing GP73-mediated hepatic endoplasmic reticulum stress. Nat Com-mun. 2024;15:1908. https://doi.org/10.1038/s41467-024-46135-9.

[116]

Xia SW, Wang ZM, Sun SM, et al. Endoplasmic reticulum stress and protein degradation in chronic liver disease. Pharmacol Res. 2020;161:105218. https://doi.org/10.1016/j.phrs.2020.105218.

[117]

Malhi H, Kaufman RJ. Endoplasmic reticulum stress in liver disease. J Hepatol. 2011;54:795-809. https://doi.org/10.1016/j.jhep.2010.11.005.

[118]

Asselah T, Bièche I, Mansouri A, et al. In vivo hepatic endoplasmic reticulum stress in patients with chronic hepatitis C. J Pathol. 2010;221:264-274. https://doi.org/10.1002/path.2703.

[119]

Lake AD, Novak P, Hardwick RN, et al. The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic fatty liver disease. Toxicol Sci. 2014;137:26-35. https://doi.org/10.1093/toxsci/kft230.

[120]

Chen LG, Wang HJ, Yao HB, et al. GP 73 is down-regulated in gastric cancer and associated with tumor differentiation. World J Surg Oncol. 2013;11:132. https://doi.org/10.1186/1477-7819-11-132.

[121]

Shen JG, Shen J, Teng RY, Wang LB, Zhao WH, Wang QC. High GP 73 expression correlates with poor response to neoadjuvant chemotherapy and survival in gastric cancer: a tissue microarray study. Pathol Oncol Res. 2021;27:603838. https://doi.org/10.3389/pore.2021.603838.

[122]

Feng H, Li B, Li Z, Wei Q, Ren L. PIVKA-II serves as a potential biomarker that complements AFP for the diagnosis of hepatocellular carcinoma. BMC Cancer. 2021;21:401. https://doi.org/10.1186/s12885-021-08138-3.

[123]

Naraki T, Kohno N, Saito H, et al. gamma-Carboxyglutamic acid content of hepatocellular carcinoma-associated des-gamma-carboxy prothrombin. Bio-chim Biophys Acta. 2002;1586:287-298. https://doi.org/10.1016/s0925-4439(01)00107-7.

[124]

Zhang YS, Chu JH, Cui SX, Song ZY, Qu XJ. Des-g-carboxy prothrombin (DCP) as a potential autologous growth factor for the development of hepatocellular carcinoma. Cell Physiol Biochem. 2014;34:903-915. https://doi.org/10.1159/ 000366308.

[125]

Lee W, Chung HJ, Kim S, et al. PIVKA-II is a candidate marker for monitoring the effects of the oral anticoagulant warfarin. Clin Biochem. 2010;43: 1177-1179. https://doi.org/10.1016/j.clinbiochem.2010.06.022.

[126]

Kondo A, Kondo H, Nakagawa Y, et al. Influence of warfarin therapy on pro-thrombin production and its posttranslational modifications. J Appl Lab Med. 2020;5:1216-1227. https://doi.org/10.1093/jalm/jfaa069.

[127]

Mager DR, McGee PL, Furuya KN, Roberts EA. Prevalence of vitamin K defi-ciency in children with mild to moderate chronic liver disease. J Pediatr Gastroenterol Nutr. 2006;42:71e76. https://doi.org/10.1097/01.mpg.0000 189327.47150.58.

[128]

Dong R, Wang N, Yang Y, et al. Review on vitamin K deficiency and its bio-markers: focus on the novel application of PIVKA-II in clinical practice. Clin Lab. 2018;64:413-424. https://doi.org/10.7754/Clin.Lab.2017.171020.

[129]

Sakon M, Monden M, Gotoh M, et al. The effects of vitamin K on the gener-ation of des-gamma-carboxy prothrombin (PIVKA-II) in patients with hepa-tocellular carcinoma. Am J Gastroenterol. 1991;86:339-345.

[130]

Furukawa M, Nakanishi T, Okuda H, Ishida S, Obata H. Changes of plasma des-gamma-carboxy prothrombin levels in patients with hepatocellular carcinoma in response to vitamin K. Cancer. 1992;69:31-38. https://doi.org/10.1002/1097-0142(19920101)69:1<31::aid-cncr2820690108>3.0.co;2-6.

[131]

Bertino G, Ardiri AM, Boemi PM, et al. A study about mechanisms of des-gamma-carboxy prothrombin’s production in hepatocellular carcinoma. Panminerva Med. 2008;50:221-226.

[132]

Okamura Y, Sugiura T, Ito T, Yamamoto Y, Ashida R, Uesaka K. The half-life of serum des-gamma-carboxy prothrombin is a prognostic index of survival and recurrence after liver resection for hepatocellular carcinoma. Ann Surg Oncol. 2016;23:921-928. https://doi.org/10.1245/s10434-016-5570-z.

[133]

Fujita K, Kinukawa H, Ohno K, Ito Y, Saegusa H, Yoshimura T. Development and evaluation of analytical performance of a fully automated chemiluminescent immunoassay for protein induced by vitamin K absence or antagonist II. Clin Biochem. 2015;48:1330e1336. https://doi.org/10.1016/j.clinbiochem.2015.07.023.

[134]

Filmus J, Church JG, Buick RN. Isolation of a cDNA corresponding to a devel-opmentally regulated transcript in rat intestine. Mol Cell Biol. 1998;8:4243-4249. https://doi.org/10.1128/mcb.8.10.4243-4249.1988.

[135]

Nishida T, Kataoka H. Glypican 3-targeted therapy in hepatocellular carcinoma. Cancers(Basel). 2019;11:1339. https://doi.org/10.3390/cancers11091339.

[136]

Traister A, Shi W, Filmus J. Mammalian Notum induces the release of glypi-cans and other GPI-anchored proteins from the cell surface. Biochem J. 2008;410:503-511. https://doi.org/10.1042/BJ20070511.

[137]

Iglesias BV, Centeno G, Pascuccelli H, et al. Expression pattern of glypican-3 (GPC3) during human embryonic and fetal development. Histol Histopathol. 2008;23:1333-1340. https://doi.org/10.14670/HH-23.1333.

[138]

Ushiku T, Uozaki H, Shinozaki A, et al. Glypican 3-expressing gastric carci-noma: distinct subgroup unifying hepatoid, clear-cell, and alpha-fetoprotein-producing gastric carcinomas. Cancer Sci. 2009;100:626-632. https://doi.org/10.1111/j.1349-7006.2009.01108.x.

[139]

Hagag NA, Ali YBM, Elsharawy AA, Talaat RM. Clinical impact of circulated miR-1291 in plasma of patients with liver cirrhosis (LC) and hepatocellular carcinoma (HCC): implication on glypican-3 expression. J Gastrointest Cancer. 2020;51:234-241. https://doi.org/10.1007/s12029-019-00234-9.

[140]

Lai JP, Sandhu DS, Yu C, et al. Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology. 2008;47:1211-1222. https://doi.org/10.1002/hep.22202.

[141]

Fico A, Maina F, Dono R. Fine-tuning of cell signaling by glypicans. Cell Mol Life Sci. 2011;68:923-929. https://doi.org/10.1007/s00018-007-7471-6.

[142]

Gao W, Ho M.The role of glypican-3 in regulating Wnt in hepatocellular carcinomas. Cancer Rep. 2011;1:14-19.

[143]

Zittermann SI, Capurro MI, Shi W, Filmus J. Soluble glypican 3 inhibits the growth of hepatocellular carcinoma in vitro and in vivo. Int J Cancer. 2010;126:1291-1301. https://doi.org/10.1002/ijc.24941.

[144]

Shih TC, Wang L, Wang HC, Wan YY. Glypican-3: a molecular marker for the detection and treatment of hepatocellular carcinoma. Liver Res. 2020;4: 168-172. https://doi.org/10.1016/j.livres.2020.11.003.

[145]

Tangkijvanich P, Chanmee T, Komtong S, et al. Diagnostic role of serum glypican-3 in differentiating hepatocellular carcinoma from non-malignant chronic liver disease and other liver cancers. J Gastroenterol Hepatol. 2010;25:129-137. https://doi.org/10.1111/j.1440-1746.2009.05988.x.

[146]

Wang C, Shao X, Zhang X, et al. Diagnostic value of glypican-3, arginase-1 and hepatocyte paraffin antigen -1 in differentiating hepatocellular carcinoma from intrahepatic cholangiocarcinoma. Transl Cancer Res. 2020;9:128-136. https://doi.org/10.21037/tcr.2019.11.20.

[147]

Wang S, Chen N, Chen Y, Sun L, Li L, Liu H. Elevated GPC 3 level promotes cell proliferation in liver cancer. Oncol Lett. 2018;16:970-976. https://doi.org/10.3892/ol.2018.8754.

[148]

Li B, Liu H, Shang HW, Li P, Li N, Ding HG. Diagnostic value of glypican-3 in alpha fetoprotein negative hepatocellular carcinoma patients. Afr Health Sci. 2013;13:703-709. https://doi.org/10.4314/ahs.v13i3.26.

[149]

Sun B, Huang Z, Wang B, et al. Significance of glypican-3 (GPC3) expression in hepatocellular cancer diagnosis. Med Sci Monit. 2017;23:850-855. https://doi.org/10.12659/msm.899198.

[150]

Johnson SW, Alhadeff JA. Mammalian alpha-L-fucosidases. Comp Biochem Physiol B. 1991;99:479-488. https://doi.org/10.1016/0305-0491(91)90327-a.

[151]

Zhang W, Chen Z, Xue C, et al. The applicability of ADA, AFU, and LAC in the early diagnosis and disease risk assessment of hepatitis B-associated liver cirrhosis and hepatocellular carcinoma. Front Med(Lausanne). 2021;8:740029. https://doi.org/10.3389/fmed.2021.740029.

[152]

Waidely E, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Alpha-l-fucosidase immunoassay for early detection of hepatocellular carcinoma. Anal Chem. 2017;89:9459-9466. https://doi.org/10.1021/acs.analchem. 7b02284.

[153]

Vaysse J, Pilardeau P, Gattegno L. Variations in serum alpha-L-fucosidase ac-tivity during childhood and pregnancy. Clin Chim Acta. 1990;187:273-280. https://doi.org/10.1016/0009-8981(90)90112-6.

[154]

Abdel-Aleem H, Ahmed A, Sabra AM, Zakhari M, Soliman M, Hamed H. Serum alpha L-fucosidase enzyme activity in ovarian and other female genital tract tumors. Int J Gynaecol Obstet. 1996;55:273-279. https://doi.org/10.1016/s0020-7292(96)02770-1.

[155]

Hirschhorn K, Beratis NG, Turner BM. alpha-L-Fucosidase in normal and deficient individuals. Adv Exp Med Biol. 1976;68:205-223. https://doi.org/10.1007/978-1-4684-7735-1_13.

[156]

Ishizuka H, Nakayama T, Matsuoka S, et al. Prediction of the development of hepato-cellular-carcinoma in patients with liver cirrhosis by the serial de-terminations of serum alpha-L-fucosidase activity. Intern Med. 1999;38: 927-931. https://doi.org/10.2169/internalmedicine.38.927.

[157]

Lamort AS, Giopanou I, Psallidas I, Stathopoulos GT. Osteopontin as a link between inflammation and cancer: the thorax in the spotlight. Cells. 2019;8:815. https://doi.org/10.3390/cells8080815.

[158]

Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018;59:17-24. https://doi.org/10.1016/j.clinbiochem.2018.07.003.

[159]

Rauber P, Lammert F, Grotemeyer K, Appenrodt B. Immature platelet fraction and thrombopoietin in patients with liver cirrhosis: a cohort study. PLoS One. 2018;13:e0192271. https://doi.org/10.1371/journal.pone.0192271.

[160]

Yang GH, Fan J, Xu Y, et al. Osteopontin combined with CD44, a novel prog-nostic biomarker for patients with hepatocellular carcinoma undergoing curative resection. Oncologist. 2008;13:1155-1165. https://doi.org/10.1634/theoncologist.2008-0081.

[161]

Liu HB, Chen QY, Wang XY, et al. Infection with hepatitis B virus may increase the serum concentrations of osteopontin. Intervirology. 2021;64:126-134. https://doi.org/10.1159/000513687.

[162]

Sim-ao A, Madaleno J, Silva N, et al. Plasma osteopontin is a biomarker for the severity of alcoholic liver cirrhosis, not for hepatocellular carcinoma screening. BMC Gastroenterol. 2015;15:73. https://doi.org/10.1186/s12876-015-0307-1.

[163]

Zhou C, Zhou HJ, Zhang XF, et al. Postoperative serum osteopontin level is a novel monitor for treatment response and tumor recurrence after resection of hepatitis B-related hepatocellular carcinoma. Ann Surg Oncol. 2013;20: 929-937. https://doi.org/10.1245/s10434-012-2749-9.

[164]

Cui G, Chen J, He J, et al. Osteopontin promotes dendritic cell maturation and function in response to HBV antigens. Drug Des Devel Ther. 2015;9: 3003-3016. https://doi.org/10.2147/DDDT.S81656.

[165]

Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuro-psychopharmacology. 2013;38:23-38. https://doi.org/10.1038/npp.2012.112.

[166]

Schilling E, Rehli M. Global, comparative analysis of tissue-specific promoter CpG methylation. Genomics. 2007;90:314-323. https://doi.org/10.1016/j.ygeno.2007.04.011.

[167]

Heyn H, Sayols S, Moutinho C, et al. Linkage of DNA methylation quantitative trait loci to human cancer risk. Cell Rep. 2014;7:331-338. https://doi.org/10.1016/j.celrep.2014.03.016.

[168]

Lange CP, Laird PW. Clinical applications of DNA methylation biomarkers in colorectal cancer. Epigenomics. 2013;5:105-108. https://doi.org/10.2217/epi.13.4.

[169]

van Vlodrop IJ, Niessen HE, Derks S, et al. Analysis of promoter CpG island hypermethylation in cancer: location, location, location. Clin Cancer Res. 2011;17:4225-4231. https://doi.org/10.1158/1078-0432.CCR-10-3394.

[170]

Papanicolau-Sengos A, Aldape K. DNA methylation profiling: an emerging paradigm for cancer diagnosis. Annu Rev Pathol. 2022;17:295-321. https://doi.org/10.1146/annurev-pathol-042220-022304.

[171]

Koch A, Joosten SC, Feng Z, et al. Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol. 2018;15:459-466. https://doi.org/10.1038/s41571-018-0004-4.

[172]

Clifford RJ, Zhang J, Meerzaman DM, et al. Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma. Hep-atology. 2010;52:2034-2043. https://doi.org/10.1002/hep.23943.

[173]

Tian Y, Yang W, Song J, Wu Y, Ni B. Hepatitis B virus X protein-induced aberrant epigenetic modifications contributing to human hepatocellular car-cinoma pathogenesis. Mol Cell Biol. 2013;33:2810-2816. https://doi.org/10.1128/MCB.00205-13.

[174]

Lambert MP, Paliwal A, Vaissière T, et al. Aberrant DNA methylation distin-guishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake. J Hepatol. 2011;54:705-715. https://doi.org/10.1016/j.jhep.2010.07.027.

[175]

Momparler RL, Bovenzi V. DNA methylation and cancer. J Cell Physiol. 2000;183:145-154. https://doi.org/10.1002/(SICI)1097-4652(200005)183:2<145::AID-JCP1>3.0.CO;2-V.

[176]

Li M, Tao Z, Zhao Y, et al. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med. 2022;20:214. https://doi.org/10.1186/s12967-022-03427-2.

[177]

Park HJ, Yu E, Shim YH. DNA methyltransferase expression and DNA hyper-methylation in human hepatocellular carcinoma. Cancer Lett. 2006;233: 271-278. https://doi.org/10.1016/j.canlet.2005.03.017.

[178]

Wahid B, Ali A, Rafique S, Idrees M. New insights into the epigenetics of hepatocellular carcinoma. BioMed Res Int. 2017;2017:1609575. https://doi.org/10.1155/2017/1609575.

[179]

Gao X, Sheng Y, Yang J, et al. Osteopontin alters DNA methylation through up-regulating DNMT1 and sensitizes CD133þ/CD44þ cancer stem cells to 5 azacytidine in hepatocellular carcinoma. J Exp Clin Cancer Res. 2018;37:179. https://doi.org/10.1186/s13046-018-0832-1.

[180]

Li YT, Wu HL, Liu CJ.Molecular mechanisms and animal models of HBV-related hepatocellular carcinoma: with emphasis on metastatic tumor anti-gen 1. Int J Mol Sci. 2021;22:9380. https://doi.org/10.3390/ijms22179380.

[181]

Lee MH, Na H, Na TY, Shin YK, Seong JK, Lee MO. Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis B virus X protein during hepatocarcinogenesis. Oncogenesis. 2012;1:e25. https://doi.org/10.1038/oncsis.2012.26.

[182]

Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic im-plications. Annu Rev Pathol. 2016;11:47-76. https://doi.org/10.1146/annurev-pathol-012615-044438.

[183]

Zhang J, Han C, Ungerleider N, et al. A transforming growth factor-b and H 19 signaling axis in tumor-initiating hepatocytes that regulates hepatic carci-nogenesis. Hepatology. 2019;69:1549-1563. https://doi.org/10.1002/hep.30153.

[184]

Leung CON, Tong M, Chung KPS, et al. Overriding adaptive resistance to sorafenib through combination therapy with Src homology 2 domain-containing phosphatase 2 blockade in hepatocellular carcinoma. Hepatology. 2020;72:155-168. https://doi.org/10.1002/hep.30989.

[185]

Zeng SS, Yamashita T, Kondo M, et al. The transcription factor SALL 4 regulates stemness of EpCAM-positive hepatocellular carcinoma. J Hepatol. 2014;60: 127-134. https://doi.org/10.1016/j.jhep.2013.08.024.

[186]

Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B. 2021;11:55-70. https://doi.org/10.1016/j.apsb.2020.09.016.

[187]

Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4:1033-1043. https://doi.org/10.5966/sctm.2015-0048.

[188]

Naor D, Wallach-Dayan SB, Zahalka MA, Sionov RV. Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Semin Cancer Biol. 2008;18:260-267. https://doi.org/10.1016/j.semcancer.2008.03.015.

[189]

Wang L, Zuo X, Xie K, Wei D. The role of CD44 and cancer stem cells. Methods Mol Biol. 2018;1692:31-42. https://doi.org/10.1007/978-1-4939-7401-6_3.

[190]

Cao L, Zhou Y, Zhai B, et al. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol. 2011;11:71. https://doi.org/10.1186/1471-230X-11-71.

[191]

Chang CW, Lo JF, Wang XW. Roles of mitochondria in liver cancer stem cells. Differentiation. 2019;107:35-41. https://doi.org/10.1016/j.diff.2019.04.001.

[192]

Xia S, Pan Y, Liang Y, Xu J, Cai X. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine. 2020;51:102610. https://doi.org/10.1016/j.ebiom.2019.102610.

[193]

Shigesawa T, Maehara O, Suda G, et al. Lenvatinib suppresses cancer stem-like cells in HCC by inhibiting FGFR1- 3 signaling, but not FGFR4 signaling. Carci-nogenesis. 2021;42:58-69. https://doi.org/10.1093/carcin/bgaa049.

[194]

Fang M, Yao M, Yang J, Zheng WJ, Wang L, Yao DF. Abnormal CD 44 activation of hepatocytes with nonalcoholic fatty accumulation in rat hepatocarcinogenesis. World J Gastrointest Oncol. 2020;12:66-76. https://doi.org/10.4251/wjgo.v12.i1.66.

[195]

Zaki MYW, Mahdi AK, Patman GL, et al. Key features of the environment promoting liver cancer in the absence of cirrhosis. Sci Rep. 2021;11:16727. https://doi.org/10.1038/s41598-021-96076-2.

[196]

Sun YF, Guo W, Xu Y, et al. Circulating tumor cells from different vascular sites exhibit spatial heterogeneity in epithelial and mesenchymal composition and distinct clinical significance in hepatocellular carcinoma. Clin Cancer Res. 2018;24:547-559. https://doi.org/10.1158/1078-0432.CCR-17-1063.

[197]

Temraz S, Nasr R, Mukherji D, Kreidieh F, Shamseddine A. Liquid biopsy derived circulating tumor cells and circulating tumor DNA as novel bio-markers in hepatocellular carcinoma. Expert Rev Mol Diagn. 2022;22: 507-518. https://doi.org/10.1080/14737159.2022.2094706.

[198]

Yu W, Hurley J, Roberts D, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol. 2021;32:466-477. https://doi.org/10.1016/j.annonc.2021.01.074.

[199]

Yang JC, Hu JJ, Li YX, Luo W, Liu JZ, Ye DW. Clinical applications of liquid biopsy in hepatocellular carcinoma. Front Oncol. 2022;12:781820. https://doi.org/10.3389/fonc.2022.781820.

[200]

Vona G, Estepa L, Béroud C, et al. Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology. 2004;39: 792-797. https://doi.org/10.1002/hep.20091.

[201]

Ahn JC, Teng PC, Chen PJ, et al. Detection of circulating tumor cells and their implications as a biomarker for diagnosis, prognostication, and therapeutic monitoring in hepatocellular carcinoma. Hepatology. 2021;73:422-436. https://doi.org/10.1002/hep.31165.

[202]

Racila E, Euhus D, Weiss AJ, et al. Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci U S A. 1998;95:4589-4594. https://doi.org/10.1073/pnas.95.8.4589.

[203]

Court CM, Hou S, Winograd P, et al. A novel multimarker assay for the phenotypic profiling of circulating tumor cells in hepatocellular carcinoma. Liver Transpl. 2018;24:946-960. https://doi.org/10.1002/lt.25062.

[204]

Yamashita T, Forgues M, Wang W, et al. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res. 2008;68:1451-1461. https://doi.org/10.1158/0008-5472.CAN-07-6013.

[205]

Chen J, Cao SW, Cai Z, Zheng L, Wang Q. Epithelial-mesenchymal transition phenotypes of circulating tumor cells correlate with the clinical stages and cancer metastasis in hepatocellular carcinoma patients. Cancer Biomark. 2017;20:487-498. https://doi.org/10.3233/CBM-170315.

[206]

Alix-Panabières C, Pantel K. Liquid biopsy: from discovery to clinical appli-cation. Cancer Discov. 2021;11:858-873. https://doi.org/10.1158/2159-8290.CD-20-1311.

[207]

Went PT, Lugli A, Meier S, et al. Frequent EpCam protein expression in human carcinomas. Hum Pathol. 2004;35:122-128. https://doi.org/10.1016/j.humpath.2003.08.026.

[208]

Zhang YJ, Wu HC, Shen J, et al. Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA. Clin Cancer Res. 2007;13:2378-2384. https://doi.org/10.1158/1078-0432.CCR-06-1900.

[209]

Tellez-Gabriel M, Cochonneau D, Cadé M, Jubellin C, Heymann MF, Heymann D. Circulating tumor cell-derived pre-clinical models for person-alized medicine. Cancers(Basel). 2018;11:19. https://doi.org/10.3390/cancers11010019.

[210]

Hartwig JH, Italiano Jr JE. Cytoskeletal mechanisms for platelet production. Blood Cells Mol Dis. 2006;36:99-103. https://doi.org/10.1016/j.bcmd.2005. 12.007.

[211]

Hartwig J, Italiano Jr J. The birth of the platelet. J Thromb Haemost. 2003;1: 1580-1586. https://doi.org/10.1046/j.1538-7836.2003.00331.x.

[212]

Sim X, Poncz M, Gadue P, French DL. Understanding platelet generation from megakaryocytes: implications for in vitro-derived platelets. Blood. 2016;127: 1227-1233. https://doi.org/10.1182/blood-2015-08-607929.

[213]

Kanikarla-Marie P, Lam M, Menter DG, Kopetz S. Platelets, circulating tumor cells, and the circulome. Cancer Metastasis Rev. 2017;36:235-248. https://doi.org/10.1007/s10555-017-9681-1.

[214]

Machlus KR, Italiano Jr JE. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol. 2013;201:785-796. https://doi.org/10.1083/jcb.201304054.

[215]

Zhu J, Strickler JH. Clinical applications of liquid biopsies in gastrointestinal oncology. J Gastrointest Oncol. 2016;7:675-686. https://doi.org/10.21037/jgo.2016.08.08.

[216]

Best MG, Wesseling P, Wurdinger T. Tumor-educated platelets as a nonin-vasive biomarker source for cancer detection and progression monitoring. Cancer Res. 2018;78:3407-3412. https://doi.org/10.1158/0008-5472.CAN-18-0887.

[217]

Dovizio M, Ballerini P, Fullone R, Tacconelli S, Contursi A, Patrignani P. Multifaceted functions of platelets in cancer: from tumorigenesis to liquid biopsy tool and drug delivery system. Int J Mol Sci. 2020;21:9585. https://doi.org/10.3390/ijms21249585.

[218]

Donati MB, Lorenzet R. Thrombosis and cancer: 40 years of research. Thromb Res. 2012;129:348-352. https://doi.org/10.1016/j.thromres.2011.12.022.

[219]

Plantureux L, Mège D, Crescence L, Dignat-George F, Dubois C, Panicot-Dubois L. Impacts of cancer on platelet production, activation and education and mechanisms of cancer-associated thrombosis. Cancers. 2018;10:441. https://doi.org/10.3390/cancers10110441.

[220]

Waqar W, Asghar S, Manzoor S. Platelets’ RNA as biomarker trove for dif-ferentiation of early-stage hepatocellular carcinoma from underlying cirrhotic nodules. PLoS One. 2021;16:e0256739. https://doi.org/10.1371/journal.pone. 0256739.

[221]

Best MG, Sol N, Kooi I, et al. RNA-Seq of Tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer di-agnostics. Cancer Cell. 2015;28:666-676. https://doi.org/10.1016/j.ccell.2015. 09.018.

[222]

Nana-Sinkam SP, Croce CM. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther. 2013;93:98-104. https://doi.org/10.1038/clpt.2012.192.

[223]

Huang Y, Yang YB, Zhang XH, Yu XL, Wang ZB, Cheng XC. MicroRNA-21 gene and cancer. Med Oncol. 2013;30:376. https://doi.org/10.1007/s12032-012-0376-8.

[224]

Nagao Y, Hisaoka M, Matsuyama A, et al. Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocar-cinoma. Mod Pathol. 2012;25:112-121. https://doi.org/10.1038/modpathol. 2011.142.

[225]

Zhou Y, Ren H, Dai B, et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res. 2018;37:324. https://doi.org/10.1186/s13046-018-0965-2.

[226]

Hu J, Ni S, Cao Y, et al. The angiogenic effect of microRNA-21 targeting TIMP 3 through the regulation of MMP2 and MMP9. PLoS One. 2016;11:e0149537. https://doi.org/10.1371/journal.pone.0149537.

[227]

Ratnasari N, Lestari P, Renovaldi D, et al. Potential plasma biomarkers: miRNA-29c, miRNA-21, and miRNA-155 in clinical progression of hepato-cellular carcinoma patients. PLoS One. 2022;17:e0263298. https://doi.org/10.1371/journal.pone.0263298.

[228]

Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol. 2013;10:542-552. https://doi.org/10.1038/nrgastro.2013.87.

[229]

Qiu LP, Wu YH, Yu XF, Tang Q, Chen L, Chen KP. The emerging role of circular RNAs in hepatocellular carcinoma. J Cancer. 2018;9:1548-1559. https://doi.org/10.7150/jca.24566.

[230]

Shen H, Liu B, Xu J, et al. Circular RNAs: characteristics, biogenesis, mecha-nisms and functions in liver cancer. J Hematol Oncol. 2021;14:134. https://doi.org/10.1186/s13045-021-01145-8.

[231]

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675-691. https://doi.org/10.1038/s41576-019-0158-7.

[232]

Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as effi-cient microRNA sponges. Nature. 2013;495:384-388. https://doi.org/10.1038/nature11993.

[233]

Xu L, Zhang M, Zheng X, Yi P, Lan C, Xu M. The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular car-cinoma. J Cancer Res Clin Oncol. 2017;143:17-27. https://doi.org/10.1007/s00432-016-2256-7.

[234]

O‘hea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity. 2008;28:477-487. https://doi.org/10.1016/j.immuni.2008.03.002.

[235]

Kulbe H, Chakravarty P, Leinster DA, et al. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res. 2012;72:66-75. https://doi.org/10.1158/0008-5472.CAN-11-2178.

[236]

Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78:539-552. https://doi.org/10.1016/j.bcp.2009.04.029.

[237]

Chen J, Gingold JA, Su X. Immunomodulatory TGF-b signaling in hepatocel-lular carcinoma. Trends Mol Med. 2019;25:1010-1023. https://doi.org/10.1016/j.molmed.2019.06.007.

[238]

Ghedini GC, Ronca R, Presta M, Giacomini A. Future applications of FGF/FGFR inhibitors in cancer. Expert Rev Anticancer Ther. 2018;18:861-872. https://doi.org/10.1080/14737140.2018.1491795.

[239]

Ait-Ahmed Y, Lafdil F. Novel insights into the impact of liver inflammatory responses on primary liver cancer development. Liver Res. 2023;7:26-34. https://doi.org/10.1016/j.livres.2023.01.001.

[240]

Chen W,Ten Dijke P. Immunoregulation by members of the TGFb superfamily. Nat Rev Immunol. 2016;16:723-740. https://doi.org/10.1038/nri.2016.112.

[241]

Chen J, Zaidi S, Rao S, et al. Analysis of genomes and transcriptomes of he-patocellular carcinomas identifies mutations and gene expression changes in the transforming growth factor-b pathway. Gastroenterology. 2018;154: 195-210. https://doi.org/10.1053/j.gastro.2017.09.007.

[242]

Adachi Y, Kamiyama H, Ichikawa K, et al. Inhibition of FGFR reactivates IFNg signaling in tumor cells to enhance the combined antitumor activity of len-vatinib with anti-PD-1 antibodies. Cancer Res. 2022;82:292-306. https://doi.org/10.1158/0008-5472.CAN-20-2426.

[243]

Yi C, Chen L, Lin Z, et al. Lenvatinib targets FGF receptor 4 to enhance anti-tumor immune response of anti-programmed cell death-1 in HCC. Hepatology. 2021;74:2544-2560. https://doi.org/10.1002/hep.31921.

[244]

Huang W, Skanderup AJ, Lee CG. Advances in genomic hepatocellular carci-noma research. GigaScience. 2018;7:giy135. https://doi.org/10.1093/giga-science/giy135.

[245]

Tornesello ML, Buonaguro L, Tatangelo F, Botti G, Izzo F, Buonaguro FM. Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics. 2013;102:74-83. https://doi.org/10.1016/j.ygeno.2013.04.001.

[246]

Cancer Genome Atlas Research Network. Electronic address: wheeler@bcm.edu; Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017; 169:1327e1341(e23). https://doi.org/10.1016/j.cell.2017.05.046.

[247]

Suresh A, Dhanasekaran R. Implications of genetic heterogeneity in hepato-cellular cancer. Adv Cancer Res. 2022;156:103-135. https://doi.org/10.1016/bs.acr.2022.01.007.

[248]

Bai X, Jia JA, Fang M, et al. Deep sequencing of HBV pre-S region reveals high heterogeneity of HBV genotypes and associations of word pattern frequencies with HCC. PLoS Genet. 2018;14:e1007206. https://doi.org/10.1371/journal.pgen.1007206.

[249]

Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom. 2016;27:1897-1905. https://doi.org/10.1007/s13361-016-1469-y.

[250]

Tajik M, Baharfar M, Donald WA. Single-cell mass spectrometry. Trends Biotechnol. 2022;40:1374-1392. https://doi.org/10.1016/j.tibtech.2022.04.004.

[251]

Liu J, Geng W, Sun H, et al. Integrative metabolomic characterisation identifies altered portal vein serum metabolome contributing to human hepatocellular carcinoma. Gut. 2022;71:1203-1213. https://doi.org/10.1136/gutjnl-2021-325189.

[252]

Adrait A, Dumonceau JM, Delhaye M, et al. Liquid biopsy of bile based on targeted mass spectrometry for the diagnosis of malignant biliary strictures. Clin Transl Sci. 2021;14:148-152. https://doi.org/10.1111/cts.12890.

[253]

Han S, Zhang R, Jain R, et al. Circadian control of bile acid synthesis by a KLF15-Fgf 15 axis. Nat Commun. 2015;6:7231. https://doi.org/10.1038/ncomms8231.

[254]

Han J-Y, Ahn KS, Kim T-S, et al. Liquid biopsy from bile-circulating tumor DNA in patients with biliary tract cancer. Cancers(Basel). 2021;13:4581. https://doi.org/10.3390/cancers13184581.

[255]

Kinugasa H, Nouso K, Ako S, et al. Liquid biopsy of bile for the molecular diagnosis of gallbladder cancer. Cancer Biol Ther. 2018;19:934-938. https://doi.org/10.1080/15384047.2018.1456604.

[256]

Van Erpecum KJ, Stolk MF, van den Broek AM, Renooij W, van de Heijning BJ, van Berge Henegouwen GP. Bile concentration promotes nucleation of cholesterol monohydrate crystals by increasing the cholesterol concentration in the vesicles. Eur J Clin Invest. 1993;23:283-288. https://doi.org/10.1111/j.1365-2362.1993.tb00775.x.

[257]

Boyer JL. Bile formation and secretion. Compr Physiol. 2013;3:1035-1078. https://doi.org/10.1002/cphy.c120027.

[258]

Chen B, Garmire L, Calvisi DF, Chua MS, Kelley RK, Chen X. Harnessing big “omics” data and AI for drug discovery in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020;17:238-251. https://doi.org/10.1038/s41575-019- 0240-9.

[259]

Cheng N, Ren Y, Zhou J, et al. Deep Learning-based classification of hepatocel-lular nodular lesions on whole-slide histopathologic images. Gastroenterology. 2022;162:1948e 1961(e7). https://doi.org/10.1053/j.gastro.2022.02.025.

[260]

Ioannou GN, Tang W, Beste LA, et al. Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepatitis C cirrhosis. JAMA Netw Open. 2020;3:e2015626. https://doi.org/10.1001/jamanetworkopen.2020.15626.

[261]

Li S, Jiang H, Pang W. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading. Comput Biol Med. 2017;84:156-167. https://doi.org/10.1016/j.compbiomed.2017.03.017.

[262]

Chen M, Zhang B, Topatana W, et al. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning. NPJ Precis Oncol. 2020;4:14. https://doi.org/10.1038/s41698-020-0120-3.

[263]

Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res. 2018;24: 1248-1259. https://doi.org/10.1158/1078-0432.CCR-17-0853.

[264]

Liang J, Zhang W, Yang J, et al. Deep learning supported discovery of bio-markers for clinical prognosis of liver cancer. Nat Mach Intell. 2023;5: 408-420. https://doi.org/10.1038/s42256-023-00635-3.

PDF (4922KB)

96

Accesses

0

Citation

Detail

Sections
Recommended

/