Application of mesenchymal stem cells in liver fibrosis and regeneration

Zhenyu Liu , Junkai Ren , Cheng Qiu , Ying Wang , Tong Zhang

Liver Research ›› 2024, Vol. 8 ›› Issue (4) : 246 -258.

PDF (325KB)
Liver Research ›› 2024, Vol. 8 ›› Issue (4) :246 -258. DOI: 10.1016/j.livres.2024.11.004
Review article
research-article

Application of mesenchymal stem cells in liver fibrosis and regeneration

Author information +
History +
PDF (325KB)

Abstract

Liver transplantation remains the most effective treatment for end-stage liver disease (ESLD), but it is fraught with challenges such as immunosuppression, high risk and cost, and donor shortage. In recent years, stem cell transplantation has emerged as a promising new strategy for ESLD treatment, with mesenchymal stem cells (MSCs) gaining significant attention because of their unique properties. MSCs can regulate signaling pathways, including hepatocyte growth factor/c-Met, Wnt/beta (β)-catenin, Notch, transforming growth factor-β1/Smad, interleukin-6/Janus kinase/signal transducer and activator of transcription 3, and phosphatidylinositol 3-kinase/PDK/Akt, thereby influencing the progression of liver fibrosis and regeneration. As a promising stem cell type, MSCs offer numerous advantages in liver disease treatment, including low immunogenicity; ease of acquisition; unlimited proliferative ability; pluripotent differentiation potential; immunomodulatory function; and anti-inflammatory, antifibrotic, and antiapoptotic biological characteristics. This review outlines the mechanisms by which MSCs reverse liver fibrosis and promote liver regeneration. MSCs are crucial in reversing liver fibrosis and repairing liver damage through the secretion of growth factors, regulation of signaling pathways, and modulation of immune responses. MSCs have shown good therapeutic effects in preclinical and clinical studies, providing new strategies for liver disease treatment. However, challenges still exist in the clinical application of MSCs, including low differentiation efficiency and limited sources. This review provides a reference for MSC application in liver disease treatment. With the continuous progress in MSC research, MSCs are expected to achieve breakthroughs in liver disease treatment, thereby improving patient treatment outcomes.

Keywords

Liver transplantation / End-stage liver disease (ESLD) / Mesenchymal stem cells (MSCs) / Liver regeneration / Liver fibrosis

Cite this article

Download citation ▾
Zhenyu Liu, Junkai Ren, Cheng Qiu, Ying Wang, Tong Zhang. Application of mesenchymal stem cells in liver fibrosis and regeneration. Liver Research, 2024, 8(4): 246-258 DOI:10.1016/j.livres.2024.11.004

登录浏览全文

4963

注册一个新账户 忘记密码

Authors’ contributions

Zhenyu Liu: Writing original draft, Writing e review & editing. Junkai Ren: Writing e review & editing, Supervision. Cheng Qiu: Writing original draft. Ying Wang: Writing original draft. Tong Zhang: Writing e review & editing, Supervision, Resources.

Declaration of competing interest

The authors declare that they have no conflict of interest.

Acknowledgements

This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

[1]

Iansante V, Mitry RR, Filippi C, Fitzpatrick E, Dhawan A. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr Res. 2018;83:232-240. https://doi.org/10.1038/pr.2017.284.

[2]

Yasen A, Tuxun T, Apaer S, et al. Fetal liver stem cell transplantation for liver diseases. Regen Med. 2019;14:703-714. https://doi.org/10.2217/rme-2018-0160.

[3]

Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multi-potent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315-317. https://doi.org/10.1080/14653240600855905.

[4]

Liu P, Yao L, Hu X, Wang Z, Xiong Z, Jiang Y. Recent advances in the immu-nomodulation mechanism of mesenchymal stem cell therapy in liver diseases. J Gastroenterol Hepatol. 2023;38:1099-1106. https://doi.org/10.1111/jgh.16247.

[5]

He Y, Guo X, Lan T, et al. Human umbilical cord-derived mesenchymal stem cells improve the function of liver in rats with acute-on-chronic liver failure via downregulating Notch and Stat1/Stat 3 signaling. Stem Cell Res Ther. 2021;12:396. https://doi.org/10.1186/s13287-021-02468-6.

[6]

Xue HL, Zeng WZ, Wu XL, et al. Clinical therapeutic effects of human umbilical cord-derived mesenchymal stem cells transplantation in the treatment of end-stage liver disease. Transplant Proc. 2015;47:412-418. https://doi.org/10.1016/j.transproceed.2014.10.048.

[7]

Wang Z, Yao L, Hu X, et al. Advancements in mesenchymal stem cell therapy for liver cirrhosis: unveiling origins, treatment mechanisms, and current research frontiers. Tissue Cell. 2023;84:102198. https://doi.org/10.1016/j.tice.2023.102198.

[8]

Cen Y, Lou G, Qi J, Zheng M, Liu Y. A new perspective on mesenchymal stem cell-based therapy for liver diseases: restoring mitochondrial function. Cell Commun Signal. 2023;21:214. https://doi.org/10.1186/s12964-023-01230-0.

[9]

Yang X, Meng Y, Han Z, Ye F, Wei L, Zong C. Mesenchymal stem cell therapy for liver disease: full of chances and challenges. Cell Biosci. 2020;10:123. https://doi.org/10.1186/s13578-020-00480-6.

[10]

Zhang L, Ma XJ, Fei YY, et al. Stem cell therapy in liver regeneration: focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol Ther. 2022;232:108004. https://doi.org/10.1016/j.pharmthera.2021.108004.

[11]

Musiał-Wysocka A, Kot M, Majka M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant. 2019;28:801-812. https://doi.org/10.1177/0963689719837897.

[12]

Wang J, Sun M, Liu W, Li Y, Li M. Stem cell-based therapies for liver diseases: an overview and update. Tissue Eng Regen Med. 2019;16:107-118. https://doi.org/10.1007/s13770-019-00178-y.

[13]

Aboul-Soud MAM, Alzahrani AJ, Mahmoud A. Induced pluripotent stem cells (iPSCs)-roles in regenerative therapies, disease modelling and drug screening. Cells. 2021;10:2319. https://doi.org/10.3390/cells10092319.

[14]

Liu H, Kim Y, Sharkis S, Marchionni L, Jang YY. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci Transl Med. 2011;3:82ra39. https://doi.org/10.1126/scitranslmed.3002376.

[15]

Zhang L, Pu K, Liu X, et al. The application of induced pluripotent stem cells against liver diseases: an update and a review. Front Med (Lausanne). 2021;8: 644594. https://doi.org/10.3389/fmed.2021.644594.

[16]

Wang J, Huang D, Yu H, Cheng Y, Ren H, Zhao Y. Developing tissue engineering strategies for liver regeneration. Engineered Regeneration. 2022;3:80-91. https://doi.org/10.1016/j.engreg.2022.02.003.

[17]

Fan Y, Du Z, Steib CJ, et al. Effect of SEPT 6 on the biological behavior of hepatic stellate cells and liver fibrosis in rats and its mechanism. Lab Invest. 2019;99: 17-36. https://doi.org/10.1038/s41374-018-0133-5.

[18]

Biswas A, Santra S, Bishnu D, Dhali GK, Chowdhury A, Santra A. Isoniazid and rifampicin produce hepatic fibrosis through an oxidative stress-dependent mechanism. Int J Hepatol. 2020;2020:6987295. https://doi.org/10.1155/ 2020/6987295.

[19]

Zheng H, Huang N, Lin JQ, Yan LY, Jiang QG, Yang WZ. Effect and mechanism of pirfenidone combined with 2-methoxy-estradiol perfusion through portal vein on hepatic artery hypoxia-induced hepatic fibrosis. Adv Med Sci. 2023;68: 46-53. https://doi.org/10.1016/j.advms.2022.12.001.

[20]

Wang W, Zhang Y, Jiang Y, et al. Exploration of potential mechanism of Rougan formula against hepatic fibrosis by network analysis and experi-mental assessment. J Ethnopharmacol. 2023;304:115960. https://doi.org/10.1016/j.jep.2022.115960.

[21]

Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells. 2020;9:875. https://doi.org/10.3390/cells9040875.

[22]

Song Y, Wei J, Li R, et al. Tyrosine kinase receptor B attenuates liver fibrosis by inhibiting TGF-b/SMAD signaling. Hepatology. 2023;78:1433-1447. https://doi.org/10.1097/HEP.0000000000000319.

[23]

Liu R, Feng L, Tang S, Liu Y, Yang Q. The impact and mechanism of TET3 overexpression on the progression of hepatic fibrosis. Epigenomics. 2023;15: 577-591. https://doi.org/10.2217/epi-2023-0146.

[24]

Zuñiga-Aguilar E, Ramírez-Fernández O. Fibrosis and hepatic regeneration mechanism. Transl Gastroenterol Hepatol. 2022;7:9. https://doi.org/10.21037/tgh.2020.02.21.

[25]

Zheng Y, Xu CL, Lu NY, et al. Study on mechanism of curcumol against liver fibrosis based on autophagy and apoptosis of hepatic stellate cells (in Chi-nese). Zhongguo Zhong Yao Za Zhi. 2022;47:730-736. https://doi.org/10.19540/j.cnki.cjcmm.20210930.401.

[26]

Xiong Y, Wen S, Li Y, et al. Comprehensive analysis of transcriptomics and metabolomics to illustrate the underlying mechanism of helenalin against hepatic fibrosis. Eur J Pharmacol. 2022;919:174770. https://doi.org/10.1016/j.ejphar.2022.174770.

[27]

Liu S, Chen P, Mohammed SAD, et al. Exploration of the potential mechanism of Baicalin for hepatic fibrosis based on network pharmacology, gut micro-biota, and experimental validation. Front Microbiol. 2023;13:1051100. https://doi.org/10.3389/fmicb.2022.1051100.

[28]

Hou LS, Zhang YW, Li H, et al. The regulatory role and mechanism of auto-phagy in energy metabolism-related hepatic fibrosis. Pharmacol Ther. 2022;234:108117. https://doi.org/10.1016/j.pharmthera.2022.108117.

[29]

Hong B, Wang Y, Hou Y, Liu R, Li W. Study on the mechanism of anti-hepatic fibrosis of Glycyrrhiza Uralensis-Salvia miltiorrhiza prescription based on serum and urine metabolomics and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci. 2022;1209:123416. https://doi.org/10.1016/j.jchromb.2022.123416.

[30]

Paik YH, Kim JK, Lee JI, et al. Celecoxib induces hepatic stellate cell apoptosis through inhibition of Akt activation and suppresses hepatic fibrosis in rats. Gut. 2009;58:1517-1527. https://doi.org/10.1136/gut.2008.157420.

[31]

Tipoe GL, Leung TM, Liong EC, Lau TY, Fung ML, Nanji AA. Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology. 2010;273:45-52. https://doi.org/10.1016/j.tox.2010.04.014.

[32]

Sun WY, Gu YJ, Li XR, et al. b-arrestin 2 deficiency protects against hepatic fibrosis in mice and prevents synthesis of extracellular matrix. Cell Death Dis. 2020;11:389. https://doi.org/10.1038/s41419-020-2596-8.

[33]

Zhu HD, Lyu CK, Ma FF. Effects of TUG 1 on hepatic fibrosis and its mechanism (in Chinese). Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2021;37:616-621. https://doi.org/10.12047/j.cjap.6139.2021.094.

[34]

Xi YX, Wen X, Jiao LJ, et al. Effects of exogenous H2S on hepatic fbrosis in diabetic mice and its mechanism (in Chinese). Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2020;36:318-320. https://doi.org/10.12047/j.cjap.5965. 2020.068.

[35]

Yang G, Li S, Jin J, et al. Protective effects of Longhu Rendan on chronic liver injury and fibrosis in mice. Liver Res. 2022;6:93-102. https://doi.org/10.1016/j.livres.2021.05.002.

[36]

Wang H, Wang Z, Wang Y, et al. miRNA-130b-5p promotes hepatic stellate cell activation and the development of liver fibrosis by suppressing SIRT 4 expression. J Cell Mol Med. 2021;25:7381-7394. https://doi.org/10.1111/jcmm.16766.

[37]

Ezhilarasan D. MicroRNA interplay between hepatic stellate cell quiescence and activation. Eur J Pharmacol. 2020;885:173507. https://doi.org/10.1016/j.ejphar.2020.173507.

[38]

Yang L, Feng BS. Research progress of mesenchymal stem cell-derived extracellular vesicles in liver diseases (in Chinese). Zhonghua Gan Zang Bing Za Zhi. 2023;31:556-560. https://doi.org/10.3760/cma.j.cn501113-20230320-00123.

[39]

Wu HW, Chen HD, Chen YH, et al. The effects of programmed cell death of mesenchymal stem cells on the development of liver fibrosis. Stem Cells Int. 2023;2023:4586398. https://doi.org/10.1155/2023/4586398.

[40]

Su DN, Wu SP, Xu SZ. Mesenchymal stem cell-based Smad7 gene therapy for experimental liver cirrhosis. Stem Cell Res Ther. 2020;11:395. https://doi.org/10.1186/s13287-020-01911-4.

[41]

Cheng L, Zhang K, Wu S, Cui M, Xu T. Focus on mesenchymal stem cell-derived exosomes: opportunities and challenges in cell-free therapy. Stem Cells Int. 2017;2017:6305295. https://doi.org/10.1155/2017/6305295.

[42]

Zou J, Yang W, Cui W, et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnology. 2023;21:14. https://doi.org/10.1186/s12951-023-01778-6.

[43]

Yang X, Zhang S, Lu J, et al. Therapeutic potential of mesenchymal stem cell-derived exosomes in skeletal diseases. Front Mol Biosci. 2024;11:1268019. https://doi.org/10.3389/fmolb.2024.1268019.

[44]

Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 2024;9:17. https://doi.org/10.1038/s41392-023-01704-0.

[45]

Samavati SF, Yarani R, Kiani S, et al. Therapeutic potential of exosomes derived from mesenchymal stem cells for treatment of systemic lupus ery-thematosus. JInflamm (Lond). 2024;21:20. https://doi.org/10.1186/s12950-024-00381-2.

[46]

Liu Q, Lv C, Huang Q, et al. ECM1 modified HF-MSCs targeting HSC attenuate liver cirrhosis by inhibiting the TGF-b/Smad signaling pathway. Cell Death Discov. 2022;8:51. https://doi.org/10.1038/s41420-022-00846-4.

[47]

Shokravi S, Borisov V, Zaman BA, et al. Mesenchymal stromal cells (MSCs) and their exosome in acute liver failure (ALF): a comprehensive review. Stem Cell Res Ther. 2022;13:192. https://doi.org/10.1186/s13287-022-02825-z.

[48]

Zhou Q, Rong C, Gu T, et al. Mesenchymal stem cells improve liver fibrosis and protect hepatocytes by promoting microRNA-148a-5p-mediated inhibition of Notch signaling pathway. Stem Cell Res Ther. 2022;13:354. https://doi.org/10.1186/s13287-022-03030-8.

[49]

Ji P, Li Y, Wang Z, et al. Advances in precision gene editing for liver fibrosis: from technology to therapeutic applications. Biomed Pharmacother. 2024;177: 117003. https://doi.org/10.1016/j.biopha.2024.117003.

[50]

Xu X, Tang H, Guo J, Xin H, Ping Y. A dual-specific CRISPR-Cas nanosystem for precision therapeutic editing of liver disorders. Signal Transduct Target Ther. 2022;7:269. https://doi.org/10.1038/s41392-022-01071-2.

[51]

Aravalli RN, Steer CJ. CRISPR/Cas 9 therapeutics for liver diseases. J Cell Bio-chem. 2018;119:4265-4278. https://doi.org/10.1002/jcb.26627.

[52]

Li Y, Lu L, Cai X. Liver regeneration and cell transplantation for end-stage liver disease. Biomolecules. 2021;11:1907. https://doi.org/10.3390/biom11121907.

[53]

Cernigliaro V, Peluso R, Zedda B, et al. Evolving cell-based and cell-free clinical strategies for treating severe human liver diseases. Cells. 2020;9:386. https://doi.org/10.3390/cells9020386.

[54]

Zhao L, Dai C, Gong Q. Changes of Endocan and its effect on hepatic stem cells during the rapid proliferation process of residual liver after ALPPS procedure. Cell Biochem Funct. 2020;38:817-825. https://doi.org/10.1002/cbf.3553.

[55]

Zhao Y, Ye W, Wang YD, Chen WD. HGF/c-Met: a key promoter in liver regeneration. Front Pharmacol. 2022;13:808855. https://doi.org/10.3389/fphar.2022.808855.

[56]

Xu X, Xing Q, Liu R, et al. Therapeutic effects and repair mechanism of HGF gene-transfected mesenchymal stem cells on injured endometrium. Stem Cells Int. 2022;2022:5744538. https://doi.org/10.1155/2022/5744538.

[57]

Neuss S, Becher E, Wöltje M, Tietze L, Jahnen-Dechent W. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells. 2004;22:405-414. https://doi.org/10.1634/stemcells.22-3-405.

[58]

Martinez Lyons A, Boulter L. NOTCH signalling - a core regulator of bile duct disease? Dis Model Mech. 2023;16:dmm050231. https://doi.org/10.1242/dmm.050231.

[59]

Zhao C, Matalonga J, Lancman JJ, et al. Regenerative failure of intrahepatic biliary cells in Alagille syndrome rescued by elevated Jagged/Notch/Sox 9 signaling. Proc Natl Acad Sci U S A. 2022;119:e2201097119. https://doi.org/10.1073/pnas.2201097119.

[60]

Duan JL, Zhou ZY, Ruan B, et al. Notch-regulated c-Kit-positive liver sinusoidal endothelial cells contribute to liver zonation and regeneration. Cell Mol Gastro-enterol Hepatol. 2022;13:1741-1756. https://doi.org/10.1016/j.jcmgh.2022.01.019.

[61]

Duan JL, Ruan B, Song P, et al. Shear stress-induced cellular senescence blunts liver regeneration through Notch-sirtuin 1-P21/P 16 axis. Hepatology. 2022;75:584-599. https://doi.org/10.1002/hep.32209.

[62]

Wolf SD, Ehlting C, Müller-Dott S, et al. Hepatocytes reprogram liver macro-phages involving control of TGF-b activation, influencing liver regeneration and injury. Hepatol Commun. 2023;7:e0208. https://doi.org/10.1097/HC9.0000000000000208.

[63]

Herranz-Itúrbide M, Pe-nuelas-Haro I, Espinosa-Sotelo R, Bertran E, Fabregat I. The TGF-b/NADPH oxidases axis in the regulation of liver cell biology in health and disease. Cells. 2021;10:2312. https://doi.org/10.3390/cells10092312.

[64]

López-Luque J, Caballero-Díaz D, Martinez-Palacián A, et al. Dissecting the role of epidermal growth factor receptor catalytic activity during liver regenera-tion and hepatocarcinogenesis. Hepatology. 2016;63:604-619. https://doi.org/10.1002/hep.28134.

[65]

Murillo MM, del Castillo G, Sánchez A, Fernández M, Fabregat I. Involvement of EGF receptor and c-Src in the survival signals induced by TGF-beta1 in hepatocytes. Oncogene. 2005;24:4580-4587. https://doi.org/10.1038/sj.onc.1208664.

[66]

Di-Iacovo N, Pieroni S, Piobbico D, et al. Liver regeneration and immunity: a tale to tell. Int J Mol Sci. 2023;24:1176. https://doi.org/10.3390/ijms24021176.

[67]

Inoue H, Ogawa W, Ozaki M, et al. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med. 2004;10: 168-174. https://doi.org/10.1038/nm980.

[68]

Cressman DE, Greenbaum LE, DeAngelis RA, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996;274: 1379-1383. https://doi.org/10.1126/science.274.5291.1379.

[69]

Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell. 2002;13:2276-2288. https://doi.org/10.1091/mbc.01-12-0584.

[70]

Latronico MV, Costinean S, Lavitrano ML, Peschle C, Condorelli G. Regulation of cell size and contractile function by AKT in cardiomyocytes. Ann N Y Acad Sci. 2004;1015:250-260. https://doi.org/10.1196/annals.1302.021.

[71]

Lee SC, Jeong HJ, Lee SK, Kim SJ.Hypoxic conditioned medium from human adipose-derived stem cells promotes mouse liver regeneration through JAK/STAT3 signaling. Stem Cells Transl Med. 2016;5:816-825. https://doi.org/10.5966/sctm.2015-0191.

[72]

Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodula-tion: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41: 653-664. https://doi.org/10.1016/j.tips.2020.06.009.

[73]

Yoshimura A, Muto G. TGF-b function in immune suppression. Curr Top Microbiol Immunol. 2011;350:127-147. https://doi.org/10.1007/82_2010_87.

[74]

Wang YH, Chen EQ. Mesenchymal stem cell therapy in acute liver failure. Gut Liver. 2023;17:674-683. https://doi.org/10.5009/gnl220417.

[75]

Yi S, Cong Q, Zhu Y, Xu Q. Mechanisms of action of mesenchymal stem cells in metabolic-associated fatty liver disease. Stem Cells Int. 2023;2023:3919002. https://doi.org/10.1155/2023/3919002.

[76]

Yadav P, Singh SK, Rajput S, et al. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: current perspectives and future challenges. Pharmacol Ther. 2024;253:108563. https://doi.org/10.1016/j.pharmthera.2023.108563.

[77]

Han X, Wang Y, Pu W, et al. Lineage tracing reveals the bipotency of SOX9þ hepatocytes during liver regeneration. Stem Cell Reports. 2019;12:624-638. https://doi.org/10.1016/j.stemcr.2019.01.010.

[78]

Font-Burgada J, Shalapour S, Ramaswamy S, et al. Hybrid periportal hepato-cytes regenerate the injured liver without giving rise to cancer. Cell. 2015;162:766-779. https://doi.org/10.1016/j.cell.2015.07.026.

[79]

Jörs S, Jeliazkova P, Ringelhan M, et al. Lineage fate of ductular reactions in liver injury and carcinogenesis. J Clin Invest. 2015;125:2445-2457. https://doi.org/10.1172/JCI78585.

[80]

Rodrigo-Torres D, Affò S, Coll M, et al. The biliary epithelium gives rise to liver progenitor cells. Hepatology. 2014;60:1367-1377. https://doi.org/10.1002/hep.27078.

[81]

Schaub JR, Huppert KA, Kurial SNT, et al. De novo formation of the biliary system by TGFb-mediated hepatocyte transdifferentiation. Nature. 2018;557: 247-251. https://doi.org/10.1038/s41586-018-0075-5.

[82]

Suzuki A, Sekiya S, Büscher D, Izpisúa Belmonte JC, Taniguchi H. Tbx 3 controls the fate of hepatic progenitor cells in liver development by suppressing p19ARF expression. Development. 2008;135:1589-1595. https://doi.org/10.1242/dev.016634.

[83]

Huch M, Bonfanti P, Boj SF, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013;32:2708-2721. https://doi.org/10.1038/emboj.2013.204.

[84]

Lu WY, Bird TG, Boulter L, et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol. 2015;17:971-983. https://doi.org/10.1038/ncb3203.

[85]

Boulter L, Govaere O, Bird TG, et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 2012;18:572-579. https://doi.org/10.1038/nm.2667.

[86]

So J, Kim A, Lee SH, Shin D. Liver progenitor cell-driven liver regeneration. Exp Mol Med. 2020;52:1230-1238. https://doi.org/10.1038/s12276-020-0483-0.

[87]

Li ZH, Chen JF, Zhang J, et al. Mesenchymal stem cells promote polarization of M2 macrophages in mice with acute-on-chronic liver failure via Mertk/JAK1/STAT6 signaling. Stem Cells. 2023;41:1171-1184. https://doi.org/10.1093/stmcls/sxad069.

[88]

Jakubowski A, Ambrose C, Parr M, et al. TWEAK induces liver progenitor cell proliferation. J Clin Invest. 2005;115:2330-2340. https://doi.org/10.1172/JCI23486.

[89]

Terada R, Yamamoto K, Hakoda T, et al. Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflam-matory liver diseases. Lab Invest. 2003;83:665-672. https://doi.org/10.1097/01.lab.0000067498.89585.06.

[90]

Streetz KL, Tacke F, Leifeld L, et al. Interleukin 6/gp130-dependent pathways are protective during chronic liver diseases. Hepatology. 2003;38:218-229. https://doi.org/10.1053/jhep.2003.50268.

[91]

So J, Kim M, Lee SH, et al. Attenuating the epidermal growth factor receptor-extracellular signal-regulated kinase-sex-determining region y-box 9 axis promotes liver progenitor cell-mediated liver regeneration in zebrafish. Hepatology. 2021;73:1494-1508. https://doi.org/10.1002/hep.31437.

[92]

Feng R, Liebe R, Weng H-L. Transcription networks in liver development and acute liver failure. Liver Res. 2023;7:47-55. https://doi.org/10.1016/j.livres.2022.11.010.

[93]

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126: 663-676. https://doi.org/10.1016/j.cell.2006.07.024.

[94]

Takeishi K, Collin de l’Hortet A, Wang Y, et al. Assembly and function of a bioengineered human liver for transplantation generated solely from induced pluripotent stem cells. Cell Rep. 2020;31:107711. https://doi.org/10.1016/j.celrep.2020.107711.

[95]

Carpentier A, Nimgaonkar I, Chu V, Xia Y, Hu Z, Liang TJ. Hepatic differenti-ation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen. Stem Cell Res. 2016;16:640-650. https://doi.org/10.1016/j.scr.2016.03.009.

[96]

Minami T, Ishii T, Yasuchika K, et al. Novel hybrid three-dimensional artificial liver using human induced pluripotent stem cells and a rat decellularized liver scaffold. Regen Ther. 2019;10:127-133. https://doi.org/10.1016/j.reth.2019.03.002.

[97]

Ebrahim N, Badr OAM, Yousef MM, et al. Functional recellularization of acellular rat liver scaffold by induced pluripotent stem cells: molecular evi-dence for Wnt/B-catenin upregulation. Cells. 2021;10:2819. https://doi.org/10.3390/cells10112819.

[98]

Shi X, Lv S, He X, et al. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells. Cell Tissue Res. 2016;366:89-99. https://doi.org/10.1007/s00441-016-2399-5.

[99]

Lázaro CA, Croager EJ, Mitchell C, et al. Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes. Hepatology. 2003;38:1095-1106. https://doi.org/10.1053/jhep.2003.50448.

[100]

Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;20:303-320. https://doi.org/10.1038/s41580-019-0103-9.

[101]

Tsolaki E, Athanasiou E, Gounari E, et al. Hematopoietic stem cells and liver regeneration: differentially acting hematopoietic stem cell mobilization agents reverse induced chronic liver injury. Blood Cells Mol Dis. 2014;53: 124-132. https://doi.org/10.1016/j.bcmd.2014.05.003.

[102]

Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest. 2002;109:1291-1302. https://doi.org/10.1172/JCI15182.

[103]

Alison MR, Poulsom R, Jeffery R, et al. Hepatocytes from non-hepatic adult stem cells. Nature. 2000;406:257. https://doi.org/10.1038/35018642.

[104]

Al-toma A, Nijeboer P, Bouma G, Visser O, Mulder CJ. Hematopoietic stem cell transplantation for non-malignant gastrointestinal diseases. World J Gastro-enterol. 2014;20:17368-17375. https://doi.org/10.3748/wjg.v20.i46.17368.

[105]

Loffredo FS, Steinhauser ML, Gannon J, Lee RT. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell. 2011;8:389-398. https://doi.org/10.1016/j.stem.2011.02.002.

[106]

Zhou J, Yue W, Pei X. Advances in cell lineage reprogramming. Sci China Life Sci. 2013;56:228-233. https://doi.org/10.1007/s11427-013-4447-7.

[107]

Shariati A, Nemati R, Sadeghipour Y, et al. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: a promising frontier. Eur J Cell Biol. 2020;99: 151097. https://doi.org/10.1016/j.ejcb.2020.151097.

[108]

Fazekas B, Alagesan S, Watson L, et al. Comparison of single and repeated dosing of anti-inflammatory human umbilical cord mesenchymal stromal cells in a mouse model of polymicrobial sepsis. Stem Cell Rev Rep. 2022;18: 1444-1460. https://doi.org/10.1007/s12015-021-10323-7.

[109]

Rodríguez-Fuentes DE, Fernández-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Salda-na HA. Mesenchymal stem cells current clinical applications: a systematic review. Arch Med Res. 2021;52:93-101. https://doi.org/10.1016/j.arcmed.2020.08.006.

[110]

Nevens F,van der Merwe S. Mesenchymal stem cell transplantation in liver diseases. Semin Liver Dis. 2022;42:283-292. https://doi.org/10.1055/s-0042-1755328.

[111]

Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838-3843. https://doi.org/10.1182/blood.v99.10.3838.

[112]

Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439-1441. https://doi.org/10.1016/S0140-6736(04) 16104-7.

[113]

Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014;15:1009-1016. https://doi.org/10.1038/ni.3002.

[114]

Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15:154-168. https://doi.org/10.1016/j.stem.2014.06.008.

[115]

Iwamoto T, Terai S, Hisanaga T, et al. Bone-marrow-derived cells cultured in serum-free medium reduce liver fibrosis and improve liver function in carbon-tetrachloride-treated cirrhotic mice. Cell Tissue Res. 2013;351: 487-495. https://doi.org/10.1007/s00441-012-1528-z.

[116]

Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143: 2273-2280. https://doi.org/10.1242/dev.134189.

[117]

Watanabe Y, Tsuchiya A, Terai S. The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future. Clin Mol Hepatol. 2021;27:70-80. https://doi.org/10.3350/cmh.2020.0194.

[118]

Jovic D, Yu Y, Wang D, et al. A brief overview of global trends in MSC-based cell therapy. Stem Cell Rev Rep. 2022;18:1525-1545. https://doi.org/10.1007/s12015-022-10369-1.

[119]

Ebrahimi F, Pirouzmand F, Cosme Pecho RD, et al. Application of mesen-chymal stem cells in regenerative medicine: a new approach in modern medical science. Biotechnol Prog. 2023;39:e3374. https://doi.org/10.1002/btpr.3374.

[120]

Yao L, Hu X, Dai K, et al. Mesenchymal stromal cells: promising treatment for liver cirrhosis. Stem Cell Res Ther. 2022;13:308. https://doi.org/10.1186/s13287-022-03001-z.

[121]

Deus IA, Mano JF, Custódio CA. Perinatal tissues and cells in tissue engineering and regenerative medicine. Acta Biomater. 2020;110:1-14. https://doi.org/10.1016/j.actbio.2020.04.035.

[122]

Gao W, Zhang L, Zhang Y, Sun C, Chen X, Wang Y. Adipose-derived mesen-chymal stem cells promote liver regeneration and suppress rejection in small-for-size liver allograft. Transpl Immunol. 2017;45:1-7. https://doi.org/10.1016/j.trim.2017.07.005.

[123]

Zhang J, Liu Y, Chen Y, et al. Adipose-derived stem cells: current applications and future directions in the regeneration of multiple tissues. Stem Cells Int. 2020;2020:8810813. https://doi.org/10.1155/2020/8810813.

[124]

Liu G, Lv H, An Y, Wei X, Yi X, Yi H. Tracking of transplanted human umbilical cord-derived mesenchymal stem cells labeled with fluorescent probe in a mouse model of acute lung injury. Int J Mol Med. 2018;41:2527-2534. https://doi.org/10.3892/ijmm.2018.3491.

[125]

Al-Dhamin Z, Liu LD, Li DD, Zhang SY, Dong SM, Nan YM. Therapeutic effi-ciency of bone marrow-derived mesenchymal stem cells for liver fibrosis: a systematic review of in vivo studies. World J Gastroenterol. 2020;26: 7444-7469. https://doi.org/10.3748/wjg.v26.i47.7444.

[126]

Gholamrezanezhad A, Mirpour S, Bagheri M, et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nucl Med Biol. 2011;38:961-967. https://doi.org/10.1016/j.nucmedbio.2011.03.008.

[127]

Cai J, Zhang X, Wang X, Li C, Liu G. In vivo MR imaging of magnetically labeled mesenchymal stem cells transplanted into rat liver through hepatic arterial injection. Contrast Media Mol Imaging. 2008;3:61-66. https://doi.org/10.1002/cmmi.231.

[128]

Li Z, Hu X, Mao J, et al. Optimization of mesenchymal stem cells (MSCs) de-livery dose and route in mice with acute liver injury by bioluminescence imaging. Mol Imaging Biol. 2015;17:185-194. https://doi.org/10.1007/s11307-014-0792-6.

[129]

Xie P, Hu X, Li D, et al. Bioluminescence imaging of transplanted mesen-chymal stem cells by overexpression of hepatocyte nuclear factor4a: tracking biodistribution and survival. Mol Imaging Biol. 2019;21:44-53. https://doi.org/10.1007/s11307-018-1204-0.

[130]

Miyazaki M, Hardjo M, Masaka T, et al. Isolation of a bone marrow-derived stem cell line with high proliferation potential and its application for pre-venting acute fatal liver failure. Stem Cells. 2007;25:2855-2863. https://doi.org/10.1634/stemcells.2007-0078.

[131]

Yaochite JN, Caliari-Oliveira C, de Souza LE, et al. Therapeutic efficacy and biodistribution of allogeneic mesenchymal stem cells delivered by intra-splenic and intrapancreatic routes in streptozotocin-induced diabetic mice. Stem Cell Res Ther. 2015;6:31. https://doi.org/10.1186/s13287-015-0017-1.

[132]

Hsu MJ, Prigent J, Dollet PE, et al. Long-term in vivo monitoring of adult-derived human liver stem/progenitor cells by bioluminescence imaging, positron emission tomography, and contrast-enhanced computed tomography. Stem Cells Dev. 2017;26:986-1002. https://doi.org/10.1089/scd.2016.0338.

[133]

Lu W, Qu J, Yan L, et al. Efficacy and safety of mesenchymal stem cell therapy in liver cirrhosis: a systematic review and meta-analysis. Stem Cell Res Ther. 2023;14:301. https://doi.org/10.1186/s13287-023-03518-x.

[134]

Wu MC, Meng QH. Current understanding of mesenchymal stem cells in liver diseases. World J Stem Cells. 2021;13:1349-1359. https://doi.org/10.4252/wjsc.v13.i9.1349.

[135]

Wang L, Li J, Liu H, et al. Pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. J Gastroenterol Hepatol. 2013; 28(Suppl 1):85e92. https://doi.org/10.1111/jgh.12029.

[136]

Zhang YC, Liu W, Fu BS, et al. Therapeutic potentials of umbilical cord-derived mesenchymal stromal cells for ischemic-type biliary lesions following liver transplantation. Cytotherapy. 2017;19:194-199. https://doi.org/10.1016/j.jcyt.2016.11.005.

[137]

Schacher FC, Martins Pezzi da Silva A, Silla LMDR, álvares-da-Silva MR. Bone marrow mesenchymal stem cells in acute-on-chronic liver failure grades 2 and 3: a phase I-II randomized clinical trial. Can J Gastroenterol Hepatol. 2021;2021:3662776. https://doi.org/10.1155/2021/3662776.

[138]

Lin BL, Chen JF, Qiu WH, et al. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: a randomized controlled trial. Hepatology. 2017;66:209-219. https://doi.org/10.1002/hep.29189.

[139]

Lanthier N, Lin-Marq N, Rubbia-Brandt L, Clément S, Goossens N, Spahr L. Autologous bone marrow-derived cell transplantation in decompensated alcoholic liver disease: what is the impact on liver histology and gene expression patterns? Stem Cell Res Ther. 2017;8:88. https://doi.org/10.1186/s13287-017-0541-2.

[140]

Suk KT, Yoon JH, Kim MY, et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: phase 2 trial. Hepatology. 2016;64:2185-2197. https://doi.org/10.1002/hep.28693.

[141]

Raman N, Imran SAM, Ahmad Amin Noordin KB, Zaman WSWK, Nordin F. Mechanotransduction in mesenchymal stem cells (MSCs) differentiation: a review. Int J Mol Sci. 2022;23:4580. https://doi.org/10.3390/ijms23094580.

[142]

Pavathuparambil Abdul Manaph N, Sivanathan KN, Nitschke J, Zhou XF, Coates PT, Drogemuller CJ. An overview on small molecule-induced differ-entiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther. 2019;10:293. https://doi.org/10.1186/s13287-019-1396-5.

[143]

Tilotta V, Vadalà G, Ambrosio L, et al. Mesenchymal stem cell-derived secre-tome enhances nucleus pulposus cell metabolism and modulates extracellular matrix gene expression in vitro. Front Bioeng Biotechnol. 2023;11:1152207. https://doi.org/10.3389/fbioe.2023.1152207.

[144]

Shen PF, Wang B, Qu YX, et al. MicroRNA-23c inhibits articular cartilage damage recovery by regulating MSCs differentiation to chondrocytes via reducing FGF2. Eur Rev Med Pharmacol Sci. 2019;23:941-948. https://doi.org/10.26355/eurrev_201902_16980.

[145]

Chiou SH, Ong HKA, Chou SJ, et al. Current trends and promising clinical utility of IPSC-derived MSC (iMSC). Prog Mol Biol Transl Sci. 2023;199: 131-154. https://doi.org/10.1016/bs.pmbts.2023.04.002.

[146]

Wang Y, Yi H, Song Y. The safety of MSC therapy over the past 15 years: a meta-analysis. Stem Cell Res Ther. 2021;12:545. https://doi.org/10.1186/s13287-021-02609-x.

[147]

Zhuang WZ, Lin YH, Su LJ, et al. Mesenchymal stem/stromal cell-based ther-apy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci. 2021;28:28. https://doi.org/10.1186/s12929-021-00725-7.

[148]

Xu J, Lian W, Wu H, et al. Improved therapeutic consistency and efficacy of mesenchymal stem cells expanded with chemically defined medium for systemic lupus erythematosus. Cell Mol Immunol. 2020;17:1104-1106. https://doi.org/10.1038/s41423-020-0364-4.

[149]

Zhou T, Yuan Z, Weng J, et al. Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol. 2021;14:24. https://doi.org/10.1186/s13045-021-01037-x.

PDF (325KB)

129

Accesses

0

Citation

Detail

Sections
Recommended

/