Leukocyte cell-derived chemotaxin 2 (LECT2) regulates liver ischemia-reperfusion injury

Meng-Qi Dong , Yuan Xie , Zhi-Liang Tang , Xue-Wen Zhao , Fu-Zhen Lin , Guang-Yu Zhang , Zhi-Hao Huang , Zhi-Min Liu , Yuan Lin , Feng-Yong Liu , Wei-Jie Zhou

Liver Research ›› 2024, Vol. 8 ›› Issue (3) : 165 -171.

PDF (2051KB)
Liver Research ›› 2024, Vol. 8 ›› Issue (3) :165 -171. DOI: 10.1016/j.livres.2024.09.004
Research article
research-article

Leukocyte cell-derived chemotaxin 2 (LECT2) regulates liver ischemia-reperfusion injury

Author information +
History +
PDF (2051KB)

Abstract

Background and aim: Hepatic ischemia-reperfusion injury (IRI) is a significant challenge in liver transplantation, trauma, hypovolemic shock, and hepatectomy, with limited effective interventions available. This study aimed to investigate the role of leukocyte cell-derived chemotaxin 2 (LECT2) in hepatic IRI and assess the therapeutic potential of Lect2-short hairpin RNA (shRNA) delivered through adeno-associated virus (AAV) vectors.

Materials and methods: This study analyzed human liver and serum samples from five patients undergoing the Pringle maneuver. Lect2-knockout and C57BL/6J mice were used. Hepatic IRI was induced by clamping the hepatic pedicle. Treatments included recombinant human LECT2 (rLECT2) and AAV-Lect2-shRNA. LECT2 expression levels and serum biomarkers including alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, and blood urea nitrogen (BUN) were measured. Histological analysis of liver necrosis and quantitative reverse-transcription polymerase chain reaction were performed.

Results: Serum and liver LECT2 levels were elevated during hepatic IRI. Serum LECT2 protein and mRNA levels increased post reperfusion. Lect2-knockout mice had reduced weight loss; hepatic necrosis; and serum ALT, AST, creatinine, and BUN levels. rLECT2 treatment exacerbated weight loss, hepatic necrosis, and serum biomarkers (ALT, AST, creatinine, and BUN). AAV-Lect2-shRNA treatment significantly reduced weight loss, hepatic necrosis, and serum biomarkers (ALT, AST, creatinine, and BUN), indicating therapeutic potential.

Conclusions: Elevated LECT2 levels during hepatic IRI increased liver damage. Genetic knockout or shRNA-mediated knockdown of Lect2 reduced liver damage, indicating its therapeutic potential. AAV-mediated Lect2-shRNA delivery mitigated hepatic IRI, offering a potential new treatment strategy to enhance clinical outcomes for patients undergoing liver-related surgeries or trauma.

Keywords

Hepatic ischemia-reperfusion injury (IRI) / Leukocyte cell-derived chemotaxin 2 (LECT2) / Adeno-associated virus (AAV)

Cite this article

Download citation ▾
Meng-Qi Dong, Yuan Xie, Zhi-Liang Tang, Xue-Wen Zhao, Fu-Zhen Lin, Guang-Yu Zhang, Zhi-Hao Huang, Zhi-Min Liu, Yuan Lin, Feng-Yong Liu, Wei-Jie Zhou. Leukocyte cell-derived chemotaxin 2 (LECT2) regulates liver ischemia-reperfusion injury. Liver Research, 2024, 8(3): 165-171 DOI:10.1016/j.livres.2024.09.004

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability statement

Data are contained within the article or supplementary mate-rial. The data presented in this study are available on request from the corresponding author Wei-Jie Zhou.

Authors’ contributions

Meng-Qi Dong and Yuan Xie contributed equally to this work. Meng-Qi Dong: Investigation, Data curation. Yuan Xie: Resources, Investigation. Zhi-Liang Tang: Resources. Xue-Wen Zhao: Re-sources. Fu-Zhen Lin: Resources. Guang-Yu Zhang: Resources. Zhi-Hao Huang: Investigation, Data curation. Zhi-Min Liu: Investiga-tion. Yuan Lin: Writing e review & editing, Supervision, Method-ology, Conceptualization. Feng-Yong Liu: Writing e review & editing, Supervision, Investigation. Wei-Jie Zhou: Writing e review & editing, Writing e original draft, Supervision, Project adminis-tration, Conceptualization.

Declaration of competing interest

The authors declare that there is no conflicts of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.livres.2024.09.004.

References

[1]

Abd-Elbaset M, Arafa ES, El Sherbiny GA, et al. Quercetin modulates iNOS, eNOS, and NOSTRIN expressions and attenuates oxidative stress in warm he-patic ischemia-reperfusion injury in rats. Beni-Suef Univ J Basic Appl Sci. 2015;4: 246-255. https://doi.org/10.1016/j.bjbas.2015.07.001.

[2]

Nastos C, Kalimeris K, Papoutsidakis N, et al. Global consequences of liver ischemia/reperfusion injury. Oxid Med Cell Longev. 2014;2014:906965. https://doi.org/10.1155/2014/906965.

[3]

Akbari G. Role of zinc supplementation on ischemia/reperfusion injury in various organs. Biol Trace Elem Res. 2020;196:1-9. https://doi.org/10.1007/s12011-019-01892-3.

[4]

Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia-reperfusion injury. Am J Surg. 2001;181:160-166. https://doi.org/10.1016/s0002-9610(00)00573-0.

[5]

Garcea G, Gescher A, Steward W, Dennison A, Berry D. Oxidative stress in humans following the Pringle manoeuvre. Hepatobiliary Pancreat Dis Int. 2006;5:210-214.

[6]

Selzner N, Rudiger H, Graf R, Clavien PA. Protective strategies against ischemic injury of the liver. Gastroenterology. 2003;125:917-936. https://doi.org/10.1016/S0016-5085(03)01048-5.

[7]

Nastos C, Kalimeris K, Papoutsidakis N, et al. Antioxidant treatment attenuates intestinal mucosal damage and gut barrier dysfunction after major hepatectomy: a study in a porcine model. J Gastrointest Surg. 2011;15: 809-817. https://doi.org/10.1007/s11605-011-1475-0.

[8]

Kalimeris K, Nastos C, Papoutsidakis N, et al. Iron chelation prevents lung injury after major hepatectomy. Hepatol Res. 2010;40:841-850. https://doi.org/10.1111/j.1872-034X.2010.00682.x.

[9]

Cannistra M, Ruggiero M, Zullo A, et al. Hepatic ischemia reperfusion injury: a systematic review of literature and the role of current drugs and biomarkers. Int J Surg. 2016; 33(Suppl 1):S57eS70. https://doi.org/10.1016/j.ijsu.2016.05.050.

[10]

Klune JR, Tsung A. Molecular biology of liver ischemia/reperfusion injury: established mechanisms and recent advancements. Surg Clin North Am. 2010;90:665-677. https://doi.org/10.1016/j.suc.2010.04.003.

[11]

Yang J, Marden JJ, Fan C, et al. Genetic redox preconditioning differentially modulates AP-1 and NF kappa B responses following cardiac ischemia/reper-fusion injury and protects against necrosis and apoptosis. Mol Ther. 2003;7: 341-353. https://doi.org/10.1016/s1525-0016(02)00061-8.

[12]

Peralta C, Jimenez-Castro MB, Gracia-Sancho J. Hepatic ischemia and reperfu-sion injury: effects on the liver sinusoidal milieu. J Hepatol. 2013;59: 1094-1106. https://doi.org/10.1016/j.jhep.2013.06.017.

[13]

McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology. 2023;78: 649-669. https://doi.org/10.1097/HEP.0000000000000207.

[14]

Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/reperfusion. Compr Physiol. 2016;7:113-170. https://doi.org/10.1002/cphy.c160006.

[15]

Yamagoe S, Yamakawa Y, Matsuo Y, Minowada J, Mizuno S, Suzuki K. Purifi-cation and primary amino acid sequence of a novel neutrophil chemotactic factor LECT2. Immunol Lett. 1996;52:9-13. https://doi.org/10.1016/0165-2478(96)02572-2.

[16]

Lu XJ, Chen J, Yu CH, et al. LECT2 protects mice against bacterial sepsis by activating macrophages via the CD209a receptor. J Exp Med. 2013;210:5-13. https://doi.org/10.1084/jem.20121466.

[17]

Lu XJ, Chen Q, Rong YJ, et al. LECT 2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719. https://doi.org/10.1038/ncomms12719.

[18]

Xie Y, Fan KW, Guan SX, Hu Y, Gao Y, Zhou WJ.LECT2: a pleiotropic and promising hepatokine, from bench to bedside. J Cell Mol Med. 2022;26: 3598-3607. https://doi.org/10.1111/jcmm.17407.

[19]

Xu M, Xu HH, Lin Y, et al. LECT2, a ligand for Tie1, plays a crucial role in liver fibrogenesis. Cell. 2019; 178:1478e1492(e20). https://doi.org/10.1016/j.cell.2019.07.021.

[20]

Lin Y, Liu Z, Dong M, Zhou W. An update of understanding of the hepatic vascular system and new research strategies (in Chinese). Nan Fang Yi Ke Da Xue Xue Bao. 2022;42:1907-1911. https://doi.org/10.12122/j.issn.1673-4254.2022.12.22.

[21]

Yoshiya K, Lapchak PH, Thai TH, et al. Depletion of gut commensal bacteria attenuates intestinal ischemia/reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1020eG1030. https://doi.org/10.1152/ajpgi.00239.2011.

[22]

Cerqueira NF, Hussni CA, Yoshida WB. Pathophysiology of mesenteric ischemia/reperfusion: a review. Acta Cir Bras. 2005;20:336-343. https://doi.org/10.1590/s0102-86502005000400013.

[23]

Widgerow AD. Ischemia-reperfusion injury: influencing the microcirculatory and cellular environment. Ann Plast Surg. 2014;72:253-260. https://doi.org/10.1097/SAP.0b013e31825c089c.

[24]

Feinberg H, Levitsky S. Postbypass treatment. Ann Thorac Surg. 1975;20: 106-113. https://doi.org/10.1016/s0003-4975(10)63861-1.

[25]

Linfert D, Chowdhry T, Rabb H. Lymphocytes and ischemia-reperfusion injury. Transplant Rev (Orlando). 2009;23:1-10. https://doi.org/10.1016/j.trre.2008.08.003.

[26]

Boros P, Bromberg JS. New cellular and molecular immune pathways in ischemia/reperfusion injury. Am J Transplant. 2006;6:652-658. https://doi.org/10.1111/j.1600-6143.2005.01228.x.

[27]

Arslan F, Keogh B, McGuirk P, Parker AE. TLR2 and TLR4 in ischemia reperfusion injury. Mediators Inflamm. 2010;2010:704202. https://doi.org/10.1155/2010/704202.

[28]

Goldsmith JR, Perez-Chanona E, Yadav PN, Whistler J, Roth B, Jobin C. Intestinal epithelial cell-derived m-opioid signaling protects against ischemia reperfusion injury through PI3K signaling. Am J Pathol. 2013;182:776-785. https://doi.org/10.1016/j.ajpath.2012.11.021.

[29]

Schofield ZV, Woodruff TM, Halai R, Wu MC, Cooper MA. Neutrophils-a key component of ischemia-reperfusion injury. Shock. 2013;40:463-470. https://doi.org/10.1097/SHK.0000000000000044.

[30]

Naso MF, Tomkowicz B, Perry III WL, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31:317-334. https://doi.org/10.1007/s40259-017-0234-5.

[31]

Rodríguez-Marquez E, Meumann N, Büning H. Adeno-associated virus (AAV) capsid engineering in liver-directed gene therapy. Expert Opin Biol Ther. 2021;21:749-766. https://doi.org/10.1080/14712598.2021.1865303.

[32]

Li J, Wang F, Xia Y, et al. Astaxanthin pretreatment attenuates hepatic ischemia reperfusion-induced apoptosis and autophagy via the ROS/MAPK pathway in mice. Mar Drugs. 2015;13:3368-3387. https://doi.org/10.3390/md13063368.

[33]

Nick JA, Young SK, Arndt PG, et al. Selective suppression of neutrophil accu-mulation in ongoing pulmonary inflammation by systemic inhibition of p 38 mitogen-activated protein kinase. J Immunol. 2002;169:5260-5269. https://doi.org/10.4049/jimmunol.169.9.5260.

PDF (2051KB)

57

Accesses

0

Citation

Detail

Sections
Recommended

/