Role of immune cell interactions in alcohol-associated liver diseases

Xianda Wang , Juan Wang , Haodong Peng , Li Zuo , Hua Wang

Liver Research ›› 2024, Vol. 8 ›› Issue (2) : 72 -82.

PDF (1034KB)
Liver Research ›› 2024, Vol. 8 ›› Issue (2) :72 -82. DOI: 10.1016/j.livres.2024.06.002
Review article
research-article

Role of immune cell interactions in alcohol-associated liver diseases

Author information +
History +
PDF (1034KB)

Abstract

Research on inflammatory response, liver injury, and immune regulation has demonstrated that the intricate interactions among immune cells constitute a critical regulatory network. Alcohol consumption alters the liver microenvironment, triggering inflammation and immune responses. Elucidating the inhibitory, cooperative, and synergistic effects among lymphocytes and myeloid cells may reveal the core mechanisms of alcohol-associated liver disease (ALD) pathogenesis and identify promising therapeutic targets. This review seeks to elucidate the intricate and multifaceted interactions among immune cells, encompassing both direct cellular interactions and the secretion of various effector molecules. It is essential to underscore that these interactions have broader and more complex roles in ALD than the activities of individual immune cell types. These interactions play a crucial role in mutually regulating one another, thereby preserving the homeostasis of the inflammatory and immune response in the liver environment. Targeting these immune cell interactions is anticipated to offer a novel approach to the prevention and treatment of ALD.

Keywords

Immune cell / Cell interactions / Inflammation / Alcohol-associated liver disease (ALD)

Cite this article

Download citation ▾
Xianda Wang, Juan Wang, Haodong Peng, Li Zuo, Hua Wang. Role of immune cell interactions in alcohol-associated liver diseases. Liver Research, 2024, 8(2): 72-82 DOI:10.1016/j.livres.2024.06.002

登录浏览全文

4963

注册一个新账户 忘记密码

Authors’ contributions

Xianda Wang, Juan Wang, and Haodong Peng contributed equally to this paper and should be considered co-first authors. Xianda Wang: Writing e review & editing. Juan Wang: Writing e original draft. Haodong Peng: Writing e original draft. Li Zuo: Writing e review & editing, Funding acquisition, Conceptualiza-tion. Hua Wang: Writing e review & editing, Conceptualization.

Declaration of competing interest

Hua Wang is an editorial board member for Liver Research and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 822250008; 82200644; 2070608; 82270589; 82070548; 81800464), the Natural Science Foundation of Anhui Province (No. 2308085J28; 2023AH020034), Postgraduate Innovation Research and Practice Program of Anhui Medical Uni-versity (No. YJS20230111).

References

[1]

Rumgay H, Shield K, Charvat H, et al. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncol. 2021;22:1071-1080. https://doi.org/10.1016/S1470-2045(21)00279-5.

[2]

Fu Y, Maccioni L, Wang XW, Greten TF, Gao B. Alcohol-associated liver cancer. Hepatology. 2024. https://doi.org/10.1097/HEP.0000000000000890.

[3]

Xu H, Xiao P, Zhang F, Liu T, Gao Y. Epidemic characteristics of alcohol-related liver disease in Asia from 2000 to 2020: a systematic review and meta-analysis. Liver Int. 2022;42:1991-1998. https://doi.org/10.1111/liv.15312.

[4]

Anderson BO, Berdzuli N, Ilbawi A, et al. Health and cancer risks associated with low levels of alcohol consumption. Lancet Public Health. 2023;8:e6ee7. https://doi.org/10.1016/S2468-2667(22)00317-6.

[5]

Lin F, Taylor NJ, Su H, et al. Alcohol dehydrogenase-specific T-cell responses are associated with alcohol consumption in patients with alcohol-related cirrhosis. Hepatology. 2013;58:314-324. https://doi.org/10.1002/hep.26334.

[6]

O'Shea RS, Dasarathy S, McCullough AJ. Practice Guideline Committee of the American Association for the Study of Liver Diseases; Practice Parameters Committee of the American College of Gastroenterology. Alcoholic liver dis-ease. Hepatology. 2010;51:307-328. https://doi.org/10.1002/hep.23258.

[7]

Xu H, Wang H. Immune cells in alcohol-related liver disease. Liver Res. 2022;6: 1-9. https://doi.org/10.1016/j.livres.2022.01.001.

[8]

Hou J, Ma R, Zhu S, Wang Y. Revealing the therapeutic targets and mechanism of ginsenoside Rg1 for liver damage related to anti-oxidative stress using proteomic analysis. Int J Mol Sci. 2022;23:10045. https://doi.org/10.3390/ijms231710045.

[9]

Zhang J, Xu M, Chen T, Zhou Y. Correlation between liver stiffness and dia-stolic function, left ventricular hypertrophy, and right cardiac function in patients with ejection fraction preserved heart failure. Front Cardiovasc Med. 2021;8:748173. https://doi.org/10.3389/fcvm.2021.748173.

[10]

Wang H, Wang Q, Yang C, et al. Bacteroides acidifaciens in the gut plays a protective role against CD95-mediated liver injury. Gut Microbes. 2022;14: 2027853. https://doi.org/10.1080/19490976.2022.2027853.

[11]

Kaminski TW, Ju EM, Gudapati S, et al. Defenestrated endothelium delays liver-directed gene transfer in hemophilia A mice. Blood Adv. 2022;6: 3729-3734. https://doi.org/10.1182/bloodadvances.2021006388.

[12]

van Albada ME, Shah P, Derks TGJ, et al. Abnormal glucose homeostasis and fasting intolerance in patients with congenital porto-systemic shunts. Front Endocrinol (Lausanne). 2023;14:1190473. https://doi.org/10.3389/fendo.2023.1190473.

[13]

Petagine L, Zariwala MG, Patel VB. Alcoholic liver disease: current insights into cellular mechanisms. World J Biol Chem. 2021;12:87-103. https://doi.org/10.4331/wjbc.v12.i5.87.

[14]

Xu W, Wu M, Chen B, Wang H. Myeloid cells in alcoholic liver diseases: mechanism and prospect. Front Immunol. 2022;13:971346. https://doi.org/10.3389/fimmu.2022.971346.

[15]

Zhu K, Wang Y, Sarlus H, et al. Myeloid cell-specific topoisomerase 1 inhibi-tion using DNA origami mitigates neuroinflammation. EMBO Rep. 2022;23: e54499. https://doi.org/10.15252/embr.202154499.

[16]

Caraffini V, Geiger O, Rosenberger A, et al. Loss of RAF kinase inhibitor protein is involved in myelomonocytic differentiation and aggravates RAS-driven myeloid leukemogenesis. Haematologica. 2020;105:375-386. https://doi.org/10.3324/haematol.2018.209650.

[17]

Sangro B, Sarobe P, Herv-A¡s-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18: 525-543. https://doi.org/10.1038/s41575-021-00438-0.

[18]

Wan S, Kuo N, Kryczek I, Zou W, Welling TH. Myeloid cells in hepatocellular carcinoma. Hepatology. 2015;62:1304-1312. https://doi.org/10.1002/hep.27867.

[19]

Ma J, Guillot A, Yang Z, et al. Distinct histopathological phenotypes of severe alcoholic hepatitis suggest different mechanisms driving liver injury and failure. J Clin Invest. 2022;132:e157780. https://doi.org/10.1172/JCI157780.

[20]

Ki SH, Park O, Zheng M, et al. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology. 2010;52:1291-1300. https://doi.org/10.1002/hep.23837.

[21]

Seitz HK, Bataller R, Cortez-Pinto H, et al. Alcoholic liver disease. Nat Rev Dis Primers. 2018;4:16. https://doi.org/10.1038/s41572-018-0014-7.

[22]

Bukong TN, Cho Y, Iracheta-Vellve A, et al. Abnormal neutrophil traps and impaired efferocytosis contribute to liver injury and sepsis severity after binge alcohol use. J Hepatol. 2018;69:1145-1154. https://doi.org/10.1016/j.jhep.2018.07.005.

[23]

Tornai D, Furi I, Shen ZT, Sigalov AB, Coban S, Szabo G. Inhibition of triggering receptor expressed on myeloid cells 1 ameliorates inflammation and macrophage and neutrophil activation in alcoholic liver disease in mice. Hepatol Commun. 2018;3:99-115. https://doi.org/10.1002/hep4.1269.

[24]

Forrest EH, Storey N, Sinha R, et al. Baseline neutrophil-to-lymphocyte ratio predicts response to corticosteroids and is associated with infection and renal dysfunction in alcoholic hepatitis. Aliment Pharmacol Ther. 2019;50:442-453. https://doi.org/10.1111/apt.15335.

[25]

Pandey G, Singh H, Chaturvedi S, et al. Utility of neutrophil CD 64 in dis-tinguishing bacterial infection from inflammation in severe alcoholic hepatitis fulfilling SIRS criteria. Sci Rep. 2021;11:19726. https://doi.org/10.1038/s41598-021-99276-y.

[26]

Zhou Z, Xu MJ, Cai Y, et al. Neutrophil-hepatic stellate cell interactions pro-mote fibrosis in experimental steatohepatitis. Cell Mol Gastroenterol Hepatol. 2018;5:399-413. https://doi.org/10.1016/j.jcmgh.2018.01.003.

[27]

Calvente CJ, Tameda M, Johnson CD, et al. Neutrophils contribute to sponta-neous resolution of liver inflammation and fibrosis via microRNA-223. J Clin Invest. 2019;129:4091-4109. https://doi.org/10.1172/JCI122258.

[28]

He Y, Feng D, Li M, et al. Hepatic mitochondrial DNA/Toll-like receptor 9/MicroRNA-223 forms a negative feedback loop to limit neutrophil overactivation and acetaminophen hepatotoxicity in mice. Hepatology. 2017;66:220-234. https://doi.org/10.1002/hep.29153.

[29]

Ren R, He Y, Ding D, et al. Aging exaggerates acute-on-chronic alcohol-induced liver injury in mice and humans by inhibiting neutrophilic sirtuin 1-C/EBPI^±-miRNA-223 axis. Hepatology. 2022;75:646-660. https://doi.org/10.1002/hep.32152.

[30]

Taylor NJ, Manakkat Vijay GK, Abeles RD, et al. The severity of circulating neutrophil dysfunction in patients with cirrhosis is associated with 90-day and 1-year mortality. Aliment Pharmacol Ther. 2014;40:705-715. https://doi.org/10.1111/apt.12886.

[31]

Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116:e74ee80. https://doi.org/10.1182/blood-2010-02-258558.

[32]

Wong KL, Tai JJ, Wong WC, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118:e16ee31. https://doi.org/10.1182/blood-2010-12-326355.

[33]

Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characteriza-tion of a novel monocyte subpopulation in human peripheral blood. Blood. 1989;74:2527-2534.

[34]

Hunt NC, Goldin RD. Nitric oxide production by monocytes in alcoholic liver disease. J Hepatol. 1992;14:146-150. https://doi.org/10.1016/0168-8278(92)90150-n.

[35]

Gobejishvili L, Barve S, Joshi-Barve S, McClain C. Enhanced PDE4B expression augments LPS-inducible TNF expression in ethanol-primed monocytes: rele-vance to alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol. 2008;295:G718eG724. https://doi.org/10.1152/ajpgi.90232.2008.

[36]

Fern-A¡ndez-Regueras M, Carbonell C, Salete-Granado D, et al. Predominantly pro-Inflammatory phenotype with mixed M1/M2 polarization of peripheral blood classical monocytes and monocyte-derived macrophages among pa-tients with excessive ethanol intake. Antioxidants (Basel). 2023;12:1708. https://doi.org/10.3390/antiox12091708.

[37]

Guilliams M, Scott CL. Liver macrophages in health and disease. Immunity. 2022;55:1515-1529. https://doi.org/10.1016/j.immuni.2022.08.002.

[38]

Dai S, Liu F, Qin Z, et al. Kupffer cells promote T-cell hepatitis by producing CXCL10 and limiting liver sinusoidal endothelial cell permeability. Thera-nostics. 2020;10:7163-7177. https://doi.org/10.7150/thno.44960.

[39]

Saikia P, Bellos D, McMullen MR, Pollard KA, de la Motte C, Nagy LE. MicroRNA 181b-3p and its target importin I^±5 regulate toll-like receptor 4 signaling in Kupffer cells and liver injury in mice in response to ethanol. Hepatology. 2017;66:602-615. https://doi.org/10.1002/hep.29144.

[40]

Xia T, Fu S, Yang R, et al. Advances in the study of macrophage polarization in inflammatory immune skin diseases. JInflamm (Lond). 2023;20:33. https://doi.org/10.1186/s12950-023-00360-z.

[41]

Lee JH, Shim YR, Seo W, et al. Mitochondrial double-stranded RNA in exosome promotes interleukin-17 production through Toll-like receptor 3 in alcohol-associated liver injury. Hepatology. 2020;72:609-625. https://doi.org/10.1002/hep.31041.

[42]

Cho YE, Yu LR, Abdelmegeed MA, Yoo SH, Song BJ. Apoptosis of enterocytes and nitration of junctional complex proteins promote alcohol-induced gut leakiness and liver injury. J Hepatol. 2018;69:142-153. https://doi.org/10.1016/j.jhep.2018.02.005.

[43]

Zhang K, Fan X, Wang X, et al. Alterations in circadian rhythms aggravate Acetaminophen-induced liver injury in mice by influencing Acetaminophen metabolization and increasing intestinal permeability. Bioengineered. 2022;13:13118-13130. https://doi.org/10.1080/21655979.2022.2079255.

[44]

Soukup AA, Matson DR, Liu P, Johnson KD, Bresnick EH. Conditionally path-ogenic genetic variants of a hematopoietic disease-suppressing enhancer. Sci Adv. 2021;7:eabk3521. https://doi.org/10.1126/sciadv.abk3521.

[45]

Liu SQ, Ren C, Yao RQ, et al. TNF-I^±-induced protein 8-like 2 negatively reg-ulates the immune function of dendritic cells by suppressing autophagy via the TAK1/JNK pathway in septic mice. Cell Death Dis. 2021;12:1032. https://doi.org/10.1038/s41419-021-04327-x.

[46]

Xiang M, Liu T, Tian C, et al. Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO 1 pathway. Pharmacol Res. 2022;177:106092. https://doi.org/10.1016/j.phrs.2022.106092.

[47]

Iberg CA, Hawiger D. Natural and induced tolerogenic dendritic cells. J Immunol. 2020;204:733-744. https://doi.org/10.4049/jimmunol.1901121.

[48]

Dou L, Ono Y, Chen YF, Thomson AW, Chen XP. Hepatic dendritic cells, the tolerogenic liver environment, and liver disease. Semin Liver Dis. 2018;38: 170-180. https://doi.org/10.1055/s-0038-1646949.

[49]

Hao L, Zhong W, Woo J, et al. Conventional type 1 dendritic cells protect against gut barrier disruption via maintaining Akkermansia muciniphila in alcoholic steatohepatitis. Hepatology. 2023;78:896-910. https://doi.org/10.1097/HEP.0000000000000019.

[50]

Yu JI, Park HC, Yoo GS, et al. Clinical significance of systemic inflammation markers in newly diagnosed, previously untreated hepatocellular carcinoma. Cancers (Basel). 2020;12:1300. https://doi.org/10.3390/cancers12051300.

[51]

Scherlinger M, Richez C, Tsokos GC, Boilard E, Blanco P. The role of platelets in immune-mediated inflammatory diseases. Nat Rev Immunol. 2023;23: 495-510. https://doi.org/10.1038/s41577-023-00834-4.

[52]

Seifert LL, Schindler P, Sturm L, et al. Aspirin improves transplant-free survival after TIPS implantation in patients with refractory ascites: a retrospective multicentre cohort study. Hepatol Int. 2022;16:658-668. https://doi.org/10.1007/s12072-022-10330-x.

[53]

Lee WS, Kim TY. Alcoholic fatty liver disease and alcoholic liver cirrhosis may be differentiated with mean platelet volume and platelet distribution width. Platelets. 2010;21:584-585. https://doi.org/10.3109/09537104.2010.500423.

[54]

Pradella P, Bonetto S, Turchetto S, et al. Platelet production and destruction in liver cirrhosis. J Hepatol. 2011;54:894-900. https://doi.org/10.1016/j.jhep.2010.08.018.

[55]

Zhang W, Zhong W, Sun Q, Sun X, Zhou Z. Hepatic overproduction of 13-HODE due to ALOX15 upregulation contributes to alcohol-induced liver injury in mice. Sci Rep. 2017;7:8976. https://doi.org/10.1038/s41598-017-02759-0.

[56]

Yoon SS, Kwon HW, Shin JH, Rhee MH, Park CE, Lee DH. Anti-thrombotic effects of artesunate through regulation of cAMP and PI3K/MAPK pathway on human platelets. Int J Mol Sci. 2022;23:1586. https://doi.org/10.3390/ijms23031586.

[57]

Koupenova M, Corkrey HA, Vitseva O, et al. The role of platelets in mediating a response to human influenza infection. Nat Commun. 2019;10:1780. https://doi.org/10.1038/s41467-019-09607-x.

[58]

Cleary SJ, Hobbs C, Amison RT, et al. LPS-induced lung platelet recruitment occurs independently from neutrophils, PSGL-1, and P-Selectin. Am J Respir Cell Mol Biol. 2019;61:232-243. https://doi.org/10.1165/rcmb.2018-0182OC.

[59]

Matsunaga Y, Terada T. Mast cell subpopulations in chronic inflammatory hepatobiliary diseases. Liver. 2000;20:152-156. https://doi.org/10.1034/j.1600-0676.2000.020002152.x.

[60]

Matsunaga Y, Kawasaki H, Terada T. Stromal mast cells and nerve fibers in various chronic liver diseases: relevance to hepatic fibrosis. Am J Gastroenterol. 1999;94:1923-1932. https://doi.org/10.1111/j.1572-0241.1999.01232.x.

[61]

Dai H, Lan P, Zhao D, et al. PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science. 2020;368:1122-1127. https://doi.org/10.1126/science.aax4040.

[62]

Li Y, Wang H, Zhang Z, et al. Identification of polo-like kinase 1 as a thera-peutic target in murine lupus. Clin Transl Immunol. 2022;11:e1362. https://doi.org/10.1002/cti2.1362.

[63]

Albanese M, Ruhle A, Mittermaier J, et al. Rapid, efficient and activation-neutral gene editing of polyclonal primary human resting CD4+ T cells allows complex functional analyses. Nat Methods. 2022;19:81-89. https://doi.org/10.1038/s41592-021-01328-8.

[64]

Hinrichs CS, Borman ZA, Gattinoni L, et al. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood. 2011;117:808-814. https://doi.org/10.1182/blood-2010-05-286286.

[65]

Osborne LM, Gilden J, Kamperman AM, et al. T-cell defects and postpartum depression. Brain Behav Immun. 2020;87:397-403. https://doi.org/10.1016/j.bbi.2020.01.007.

[66]

Sugimoto C, Murakami Y, Ishii E, Fujita H, Wakao H. Reprogramming and redifferentiation of mucosal-associated invariant T cells reveal tumor inhibi-tory activity. Elife. 2022;11:e70848. https://doi.org/10.7554/eLife.70848.

[67]

Edlich B, Ahlenstiel G, Zabaleta Azpiroz A, et al. Early changes in interferon signaling define natural killer cell response and refractoriness to interferon-based therapy of hepatitis C patients. Hepatology. 2012;55:39-48. https://doi.org/10.1002/hep.24628.

[68]

Taylor SA, Assis DN, Mack CL. The contribution of B cells in autoimmune liver diseases. Semin Liver Dis. 2019;39:422-431. https://doi.org/10.1055/s-0039-1688751.

[69]

Perrier P, Martinez FO, Locati M, et al. Distinct transcriptional programs activated by interleukin-10 with or without lipopolysaccharide in dendritic cells: induction of the B cell-activating chemokine, CXC chemokine ligand 13. J Immunol. 2004;172:7031-7042. https://doi.org/10.4049/jimmunol.172.11.7031.

[70]

Bhogal RK, Bona CA. B cells: no longer bystanders in liver fibrosis. J Clin Invest. 2005;115:2962-2965. https://doi.org/10.1172/JCI26845.

[71]

Mackowiak B, Fu Y, Maccioni L, Gao B. Alcohol-associated liver disease. J Clin Invest. 2024;134:e176345. https://doi.org/10.1172/JCI176345.

[72]

Hou L, Voit RA, Sankaran VG, Springer TA, Yuki K. CD11c regulates hemato-poietic stem and progenitor cells under stress. Blood Adv. 2020;4:6086-6097. https://doi.org/10.1182/bloodadvances.2020002504.

[73]

Lee S, Zhao L, Rojas C, et al. Molecular analysis of clinically defined subsets of high-grade serous ovarian cancer. Cell Rep. 2020;31:107502. https://doi.org/10.1016/j.celrep.2020.03.066.

[74]

Prakhar P, Alvarez-DelValle J, Keller H, et al. The small intestine epithelium exempts Foxp3+ Tregs from their IL-2 requirement for homeostasis and effector function. JCI Insight. 2021;6:e149656. https://doi.org/10.1172/jci.insight.149656.

[75]

Gao Y, Zhou Z, Ren T, et al. Alcohol inhibits T-cell glucose metabolism and hepatitis in ALDH2-deficient mice and humans: roles of acetaldehyde and glucocorticoids. Gut. 2019;68:1311-1322. https://doi.org/10.1136/gutjnl-2018-316221.

[76]

Graham JJ, Mukherjee S, Yuksel M, et al. Aberrant hepatic trafficking of gut-derived T cells is not specific to primary sclerosing cholangitis. Hepatology. 2022;75:518-530. https://doi.org/10.1002/hep.32193.

[77]

Oran DC, Lokumcu T, Inceoglu Y, et al. Engineering human stellate cells for beta cell replacement therapy promotes in vivo recruitment of regulatory T cells. Mater Today Bio. 2019;2:100006. https://doi.org/10.1016/j.mtbio.2019.100006.

[78]

Abe M, Hiasa Y, Onji M. T helper 17 cells in autoimmune liver diseases. Clin Dev Immunol. 2013;2013:607073. https://doi.org/10.1155/2013/607073.

[79]

Lafdil F, Miller AM, Ki SH, Gao B. Th 17 cells and their associated cytokines in liver diseases. Cell Mol Immunol. 2010;7:250-254. https://doi.org/10.1038/cmi.2010.5.

[80]

Riva A, Patel V, Kurioka A, et al. Mucosa-associated invariant T cells link in-testinal immunity with antibacterial immune defects in alcoholic liver dis-ease. Gut. 2018;67:918-930. https://doi.org/10.1136/gutjnl-2017-314458.

[81]

Zhang Y, Fan Y, He W, et al. Persistent deficiency of mucosa-associated invariant T (MAIT) cells during alcohol-related liver disease. Cell Biosci. 2021;11:148. https://doi.org/10.1186/s13578-021-00664-8.

[82]

Jia L, Wang T, Zhao Y, et al. Single-cell profiling of infiltrating B cells and tertiary lymphoid structures in the TME of gastric adenocarcinomas. Oncoimmunology. 2021;10:1969767. https://doi.org/10.1080/2162402X.2021.1969767.

[83]

Burugupalli S, Almeida CF, Smith DGM, et al. a-Glucuronosyl and a-glucosyl diacylglycerides, natural killer T cell-activating lipids from bacteria and fungi. Chem Sci. 2020;11:2161-2168. https://doi.org/10.1039/c9sc05248h.

[84]

Wang H, Feng D, Park O, Yin S, Gao B. Invariant NKT cell activation induces neutrophil accumulation and hepatitis: opposite regulation by IL-4 and IFN-^I³. Hepatology. 2013;58:1474-1485. https://doi.org/10.1002/hep.26471.

[85]

Weng X, He Y, Visvabharathy L, et al. Crosstalk between type II NKT cells and T cells leads to spontaneous chronic inflammatory liver disease. J Hepatol. 2017;67:791-800. https://doi.org/10.1016/j.jhep.2017.05.024.

[86]

Kumar V. NKT-cell subsets: promoters and protectors in inflammatory liver disease. J Hepatol. 2013;59:618-620. https://doi.org/10.1016/j.jhep.2013.02.032.

[87]

Maricic I, Sheng H, Marrero I, et al. Inhibition of type I natural killer T cells by retinoids or following sulfatide-mediated activation of type II natural killer T cells attenuates alcoholic liver disease in mice. Hepatology. 2015;61: 1357-1369. https://doi.org/10.1002/hep.27632.

[88]

Wang X, Yu H, Xing R, Li P. Hepatoprotective effect of oyster peptide on alcohol-induced liver disease in mice. Int J Mol Sci. 2022;23:8081. https://doi.org/10.3390/ijms23158081.

[89]

Liao H, Du S, Jiang T, Zheng M, Xiang Z, Yang J. UMSCs Attenuate LPS/D-GalN-induced acute liver failure in mice by down-regulating the MyD88/NF-^IºB pathway. J Clin Transl Hepatol. 2021;9:690-701. https://doi.org/10.14218/JCTH.2020.00157.

[90]

Pecorelli A, Cordone V, Messano N, et al. Altered inflammasome machinery as a key player in the perpetuation of Rett syndrome oxinflammation. Redox Biol. 2020;28:101334. https://doi.org/10.1016/j.redox.2019.101334.

[91]

Vergis N, Patel V, Bogdanowicz K, et al. IL-1 Signal Inhibition In Alcoholic Hepatitis (ISAIAH): a study protocol for a multicentre, randomised, placebo-controlled trial to explore the potential benefits of canakinumab in the treatment of alcoholic hepatitis. Trials. 2021;22:792. https://doi.org/10.1186/s13063-021-05719-2.

[92]

Jeong WI, Park O, Gao B. Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology. 2008;134:248-258. https://doi.org/10.1053/j.gastro.2007.09.034.

[93]

Xue R, Zhang Q, Cao Q, et al. Liver tumour immune microenvironment sub-types and neutrophil heterogeneity. Nature. 2022;612:141-147. https://doi.org/10.1038/s41586-022-05400-x.

[94]

Li J, Kumari T, Barazia A, et al. Neutrophil DREAM promotes neutrophil recruitment in vascular inflammation. J Exp Med. 2022;219:e20211083. https://doi.org/10.1084/jem.20211083.

[95]

Okuyama A, Nagasawa H, Suzuki K, et al. FcÎ3 receptor IIIb polymorphism and use of glucocorticoids at baseline are associated with infusion reactions to infliximab in patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70: 299-304. https://doi.org/10.1136/ard.2010.136283.

[96]

Huang C, Fan X, Shen Y, Shen M, Yang L. Neutrophil subsets in noncancer liver diseases: cellular crosstalk and therapeutic targets. Eur J Immunol. 2023;53: e2250324. https://doi.org/10.1002/eji.202250324.

[97]

Engh JA, Ueland T, Agartz I, et al. Plasma levels of the cytokines B cell-acti-vating factor (BAFF) and a proliferation-inducing ligand (APRIL) in schizo-phrenia, bipolar, and major depressive disorder: a cross sectional, multisite study. Schizophr Bull. 2022;48:37-46. https://doi.org/10.1093/schbul/sbab106.

[98]

Winterbourn CC, Kettle AJ, Hampton MB. Reactive oxygen species and neutrophil function. Annu Rev Biochem. 2016;85:765-792. https://doi.org/10.1146/annurev-biochem-060815-014442.

[99]

Takahashi A, Hanson MG, Norell HR, et al. Preferential cell death of CD8+ effector memory (CCR7-CD45RA-) T cells by hydrogen peroxide-induced oxidative stress. J Immunol. 2005;174:6080-6087. https://doi.org/10.4049/jimmunol.174.10.6080.

[100]

Takeuchi M, Vidigal PT, Guerra MT, et al. Neutrophils interact with chol-angiocytes to cause cholestatic changes in alcoholic hepatitis. Gut. 2021;70: 342-356. https://doi.org/10.1136/gutjnl-2020-322540.

[101]

Petrovich E, Feigelson SW, Stoler-Barak L, et al. Lung ICAM-1 and ICAM-2 support spontaneous intravascular effector lymphocyte entrapment but are not required for neutrophil entrapment or emigration inside endotoxin-inflamed lungs. FASEB J. 2016;30:1767-1778. https://doi.org/10.1096/fj.201500046.

[102]

Carpenter R, Oh HJ, Ham IH, Kim D, Hur H, Lee J. Scaffold-assisted ectopic transplantation of internal organs and patient-derived tumors. ACS Biomater Sci Eng. 2019;5:6667-6678. https://doi.org/10.1021/acsbiomaterials.9b00978.

[103]

Meng D, Qin Y, Lu N, et al. Kupffer cells promote the differentiation of adult liver hematopoietic stem and progenitor cells into lymphocytes via ICAM-1 and LFA-1 interaction. Stem Cells Int. 2019;2019:4848279. https://doi.org/10.1155/2019/4848279.

[104]

Hsu BE, Tabari-ès S, Johnson RM, et al. Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis. Cell Rep. 2019;27:3902-3915.e6. https://doi.org/10.1016/j.celrep.2019.05.091.

[105]

Swirski FK, Robbins CS. Neutrophils usher monocytes into sites of inflam-mation. Circ Res. 2013;112:744-745. https://doi.org/10.1161/CIRCRESAHA.113.300867.

[106]

Peng ZP, Jiang ZZ, Guo HF, et al. Glycolytic activation of monocytes regulates the accumulation and function of neutrophils in human hepatocellular car-cinoma. J Hepatol. 2020;73:906-917. https://doi.org/10.1016/j.jhep.2020.05.004.

[107]

Wang J, Wang X, Peng H, et al. Platelets in alcohol-associated liver disease: interaction with neutrophils. Cell Mol Gastroenterol Hepatol. 2024. https://doi.org/10.1016/j.jcmgh.2024.03.001.

[108]

Chen L, Gu J, Qian Y, et al. Deletion of C-C motif chemokine ligand 5 worsens invariant natural killer T-cell-mediated hepatitis via compensatory up-regu-lation of CXCR2-related chemokine activity. Cell Mol Gastroenter. 2019;7: 623-639. https://doi.org/10.1016/j.jcmgh.2018.12.009.

[109]

Ma AC, Kubes P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost. 2008;6:415-420. https://doi.org/10.1111/j.1538-7836.2007.02865.x.

[110]

Haselmayer P, Grosse-Hovest L, von Landenberg P, Schild H, Radsak MP. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood. 2007;110:1029-1035. https://doi.org/10.1182/blood-2007-01-069195.

[111]

Lautenschlager SOS, Kim T,Bid-A3ia DL, Nakamura CV, Anders HJ, Steiger S. Plasma Proteins and Platelets Modulate Neutrophil Clearance of Malaria-Related Hemozoin Crystals. Cells. 2019;9:93. https://doi.org/10.3390/cells9010093.

[112]

Ortiz-Mu-A±oz G, Mallavia B, Bins A, Headley M, Krummel MF, Looney MR. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood. 2014;124:2625-2634. https://doi.org/10.1182/blood-2014-03-562876.

[113]

Li N, Liu H, Xue Y, et al. Targetable Brg1-CXCL 14 axis contributes to alcoholic liver injury by driving neutrophil trafficking. EMBO Mol Med. 2023;15:e16592. https://doi.org/10.15252/emmm.202216592.

[114]

Cheng C, Zhang Q, Li Y, et al. Interplay between liver type 1 innate lymphoid cells and NK cells drives the development of alcoholic steatohepatitis. Cell Mol Gastroenter. 2023;15:261-274. https://doi.org/10.1016/j.jcmgh.2022.09.010.

[115]

Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol. 2009;86: 513-528. https://doi.org/10.1189/JLB.0309135.

[116]

Chuang YM, He L, Pinn ML, et al. Albumin fusion with granulocyte-macro-phage colony-stimulating factor acts as an immunotherapy against chronic tuberculosis. Cell Mol Immunol. 2021;18:2393-2401. https://doi.org/10.1038/s41423-020-0439-2.

PDF (1034KB)

61

Accesses

0

Citation

Detail

Sections
Recommended

/