Generative AI: A transformative force in advancing research and care in metabolic dysfunction-associated fatty liver disease

Partha Pratim Ray

Liver Research ›› 2024, Vol. 8 ›› Issue (2) : 127 -129.

PDF (189KB)
Liver Research ›› 2024, Vol. 8 ›› Issue (2) :127 -129. DOI: 10.1016/j.livres.2024.05.002
Correspondence
research-article

Generative AI: A transformative force in advancing research and care in metabolic dysfunction-associated fatty liver disease

Author information +
History +
PDF (189KB)

Cite this article

Download citation ▾
Partha Pratim Ray. Generative AI: A transformative force in advancing research and care in metabolic dysfunction-associated fatty liver disease. Liver Research, 2024, 8(2): 127-129 DOI:10.1016/j.livres.2024.05.002

登录浏览全文

4963

注册一个新账户 忘记密码

Author’s contributions

Partha Pratim Ray: Writing e review & editing, Software, Methodology, Conceptualization.

Declaration of competing interest

The author declares that there is no conflicts of interest.

Acknowledgement

Author thanks Claude3 for discussion about MAFLD and initial content framing.

References

[1]

Kaya E, Zedginidze A, Bechmann L, Canbay A. Metabolic dysfunction-associated fatty liver disease (MAFLD) and non-alcoholic fatty liver disease (NAFLD): distinct fatty liver entities with different clinical outcomes? Hepatobiliary Surg Nutr. 2022;11:299-301. https://doi.org/10.21037/hbsn-21-548.

[2]

Bhopale KK, Srinivasan MP. Therapeutics for metabolic dysfunction-associated fatty liver disease (MAFLD). Liver. 2023;3:597-617. https://doi.org/10.3390/livers3040040.

[3]

Li Y, Wang X, Zhang J, Zhang S, Jiao J. Applications of artificial intelligence (AI) in researches on non-alcoholic fatty liver disease(NAFLD) : a systematic review. Rev Endocr Metab Disord. 2022;23:387-400. https://doi.org/10.1007/s11154-021-09681-x.

[4]

Dai S, Guo X, Liu S, et al. Application of intelligent tongue image analysis in conjunction with microbiomes in the diagnosis of MAFLD. Heliyon. 2024;10: e29269. https://doi.org/10.1016/j.heliyon.2024.e29269.

[5]

Alauthman M, Aldweesh A, Al-qerem A, et al. Tabular data generation to improve classification of liver disease diagnosis. Appl Sci (Basel). 2023;13: 2678. https://doi.org/10.3390/app13042678.

[6]

Pugliese N, Wai-Sun Wong V, Schattenberg JM, et al. Accuracy, reliability, and comprehensibility of ChatGPT-generated medical responses for patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2024;22: 886-889.e5. https://doi.org/10.1016/j.cgh.2023.08.033.

[7]

Agraz M, Mantzoros C, Karniadakis GE. ChatGPT-Enhanced ROC Analysis (CERA): a shiny web tool for finding optimal cutoff points in biomarker anal-ysis. PLoS One. 2024;19:e0289141. https://doi.org/10.1371/journal.pone.0289141.

[8]

Yeo YH, Samaan JS, Ng WH, et al. Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma. Clin Mol Hepatol. 2023;29:721-732. https://doi.org/10.3350/cmh.2023.0089.

[9]

Cao JJ, Kwon DH, Ghaziani TT, et al. Accuracy of information provided by ChatGPT regarding liver cancer surveillance and diagnosis. AJR Am J Roentgenol. 2023;221:556-559. https://doi.org/10.2214/AJR.23.29493.

[10]

Giuffre M, You K, Shung DL. Evaluating ChatGPT in medical contexts: the imperative to guard against hallucinations and partial accuracies. Clin Gastro-enterol Hepatol. 2024;22:1145-1146. https://doi.org/10.1016/j.cgh.2023.09.035.

PDF (189KB)

74

Accesses

0

Citation

Detail

Sections
Recommended

/