Role of the portal system in liver regeneration: From molecular mechanisms to clinical management

Hanzhi Xu , Xun Qiu , Zhoucheng Wang , Kai Wang , Yawen Tan , Fengqiang Gao , Marcos Vinicius Perini , Xiao Xu

Liver Research ›› 2024, Vol. 8 ›› Issue (1) : 1 -10.

PDF (1160KB)
Liver Research ›› 2024, Vol. 8 ›› Issue (1) :1 -10. DOI: 10.1016/j.livres.2024.01.002
Review article
research-article

Role of the portal system in liver regeneration: From molecular mechanisms to clinical management

Author information +
History +
PDF (1160KB)

Abstract

The liver has a strong regenerative capacity that ensures patient recovery after hepatectomy and liver transplantation. The portal system plays a crucial role in the dual blood supply to the liver, making it a significant factor in hepatic function. Several surgical strategies, such as portal vein ligation, associating liver partition and portal vein ligation for staged hepatectomy, and dual vein embolization, have highlighted the portal system's importance in liver regeneration. Following hepatectomy or liver transplantation, the hemodynamic properties of the portal system change dramatically, triggering regeneration via shear stress and the induction of hypoxia. However, excessive portal hyperperfusion can harm the liver and negatively affect patient outcomes. Furthermore, as the importance of the gut-liver axis has gradually been revealed, the effect of metabolites and cytokines from gut microbes carried by portal blood on liver regeneration has been acknowledged. From these perspectives, this review outlines the molecular mechanisms of the portal system's role in liver regeneration and summarizes therapeutic strategies based on the portal system intervention to promote liver regeneration.

Keywords

Portal system / Liver regeneration / Hemodynamic properties / Gut microbiota / Therapeutic strategies

Cite this article

Download citation ▾
Hanzhi Xu, Xun Qiu, Zhoucheng Wang, Kai Wang, Yawen Tan, Fengqiang Gao, Marcos Vinicius Perini, Xiao Xu. Role of the portal system in liver regeneration: From molecular mechanisms to clinical management. Liver Research, 2024, 8(1): 1-10 DOI:10.1016/j.livres.2024.01.002

登录浏览全文

4963

注册一个新账户 忘记密码

Authors’ contributions

Each author substantially contributed to this work. Hanzhi Xu, Xun Qiu, Zhoucheng Wang, Yawen Tan, and Fengqiang Gao: conceptualization, writing original draft. Kai Wang and Marcos Vinicius Perini: manuscript review and editing. Xiao Xu: supervi-sion. All authors read and approved the final manuscript.

Declaration of competing interest

The authors declare that there is no conflicts of interest.

Acknowledgements

This work was supported by The National Key Research and Development Program of China (No. 2021YFA1100504), Key Pro-gram, National Natural Science Foundation of China (No. 81930016), and The Zhejiang Provincial Natural Science Foundation (LY22H160048).

References

[1]

Abdel-Misih SR, Bloomston M. Liver anatomy. Surg Clin North Am. 2010;90: 643-653. https://doi.org/10.1016/j.suc.2010.04.017.

[2]

Dili A, Bertrand C, Lebrun V, Pirlot B, Leclercq IA. Hypoxia protects the liver from Small for Size Syndrome: a lesson learned from the associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) procedure in rats. Am J Transplant. 2019;19:2979-2990. https://doi.org/10.1111/ajt.15420.

[3]

Lang H, Baumgart J, Mittler J. Associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) registry: what have we learned? Gut Liver. 2020;14:699-706. https://doi.org/10.5009/gnl19233.

[4]

Yagi S, Hirata M, Miyachi Y, Uemoto S. Liver regeneration after hepatectomy and partial liver transplantation. Int J Mol Sci. 2020;21:8414. https://doi.org/10.3390/ijms21218414.

[5]

Carnovale CE, Ronco MT. Role of nitric oxide in liver regeneration. Ann Hep-atol. 2012;11:636-647. https://doi.org/10.1016/S1665-2681(19)31436-X.

[6]

Naseem S, Hussain T, Manzoor S. Interleukin-6: a promising cytokine to support liver regeneration and adaptive immunity in liver pathologies. Cytokine Growth Factor Rev. 2018;39:36-45. https://doi.org/10.1016/j.cytogfr.2018.01.002.

[7]

Lafoz E, Ruart M, Anton A, Oncins A, Hernández-Gea V. The endothelium as a driver of liver fibrosis and regeneration. Cells. 2020;9:929. https://doi.org/10.3390/cells9040929.

[8]

Schadde E, Tsatsaris C, Swiderska-Syn M, et al. Hypoxia of the growing liver accelerates regeneration. Surgery. 2017;161:666-679. https://doi.org/10.1016/j.surg.2016.05.018.

[9]

Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemia-reperfusion injury in liver transplantation-from bench to bedside. Nat Rev Gastroenterol Hepatol. 2013;10:79-89. https://doi.org/10.1038/nrgastro.2012.225.

[10]

Yagi S, Iida T, Hori T, et al. Effect of portal haemodynamics on liver graft and intestinal mucosa after small-for-size liver transplantation in swine. Eur Surg Res. 2012;48:163-170. https://doi.org/10.1159/000338622.

[11]

Konturek PC, Harsch IA, Konturek K, et al. Gut-liver axis: how do gut bacteria influence the liver? Med Sci (Basel). 2018;6:79. https://doi.org/10.3390/medsci6030079.

[12]

Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch. 2010;459:793-806. https://doi.org/10.1007/s00424-009-0767-7.

[13]

Weckbach LT, Preissner KT, Deindl E. The role of midkine in arteriogenesis, involving mechanosensing, endothelial cell proliferation, and vasodilation. Int J Mol Sci. 2018;19:2559. https://doi.org/10.3390/ijms19092559.

[14]

Wang Z, Wang F, Kong X, Gao X, Gu Y, Zhang J. Oscillatory shear stress induces oxidative stress via TLR4 activation in endothelial cells. Mediators Inflamm. 2019;2019:7162976. https://doi.org/10.1155/2019/7162976.

[15]

Gratton JP, Fontana J, O’Connor DS, Garcia-Cardena G, McCabe TJ, Sessa WC. Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp 90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem. 2000;275: 22268-22272. https://doi.org/10.1074/jbc.M001644200.

[16]

Busse R, Mülsch A. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett. 1990;265:133-136. https://doi.org/10.1016/0014-5793(90)80902-u.

[17]

Fleming I, Busse R. Signal transduction of eNOS activation. Cardiovasc Res. 1999;43:532-541. https://doi.org/10.1016/s0008-6363(99)00094-2.

[18]

Ghimire K, Zaric J, Alday-Parejo B, et al. MAGI 1 mediates eNOS activation and NO production in endothelial cells in response to fluid shear stress. Cells. 2019;8:388. https://doi.org/10.3390/cells8050388.

[19]

Bartosch AMW, Mathews R, Mahmoud MM, Cancel LM, Haq ZS, Tarbell JM. Heparan sulfate proteoglycan glypican-1 and PECAM-1 cooperate in shear-induced endothelial nitric oxide production. Sci Rep. 2021;11:11386. https://doi.org/10.1038/s41598-021-90941-w.

[20]

Chen M, Yi B, Zhu N, et al. Pim 1 kinase promotes angiogenesis through phosphorylation of endothelial nitric oxide synthase at Ser-633. Cardiovasc Res. 2016;109:141-150. https://doi.org/10.1093/cvr/cvv250.

[21]

Muzorewa TT, Buerk DG, Jaron D, Barbee KA. Coordinated regulation of endothelial calcium signaling and shear stress-induced nitric oxide produc-tion by PKCb and PKCh. Cell Signal. 2021;87:110125. https://doi.org/10.1016/j.cellsig.2021.110125.

[22]

Poisson J, Lemoinne S, Boulanger C, et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol. 2017;66:212-227. https://doi.org/10.1016/j.jhep.2016.07.009.

[23]

Mao SA, Glorioso JM, Nyberg SL. Liver regeneration. Transl Res. 2014;163: 352-362. https://doi.org/10.1016/j.trsl.2014.01.005.

[24]

Mei Y, Thevananther S. Endothelial nitric oxide synthase is a key mediator of hepatocyte proliferation in response to partial hepatectomy in mice. Hep-atology. 2011;54:1777-1789. https://doi.org/10.1002/hep.24560.

[25]

Kawai M, Naruse K, Komatsu S, et al. Mechanical stress-dependent secretion of interleukin 6 by endothelial cells after portal vein embolization: clinical and experimental studies. J Hepatol. 2002;37:240-246. https://doi.org/10.1016/s0168-8278(02)00171-x.

[26]

Urschel K, Cicha I, Daniel WG, Garlichs CD. Shear stress patterns affect the secreted chemokine profile in endothelial cells. Clin Hemorheol Microcirc. 2012;50:143-152. https://doi.org/10.3233/CH-2011-1450.

[27]

van Agtmaal EL, Bierings R, Dragt BS, et al. The shear stress-induced tran-scription factor KLF 2 affects dynamics and angiopoietin-2 content of Weibel-Palade bodies. PLoS One. 2012;7:e38399. https://doi.org/10.1371/journal.pone.0038399.

[28]

Wang P, Zhu F, Lee NH, Konstantopoulos K.Shear-induced interleukin-6 synthesis in chondrocytes: roles of E prostanoid (EP) 2 and EP 3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-kappaB activation. J Biol Chem. 2010;285:24793-24804. https://doi.org/10.1074/jbc.M110.110320.

[29]

Wang P, Zhu F, Tong Z, Konstantopoulos K.Response of chondrocytes to shear stress: antagonistic effects of the binding partners Toll-like receptor 4 and caveolin-1. FASEB J. 2011;25:3401-3415. https://doi.org/10.1096/fj.11-184861.

[30]

Qin WD, Zhang F, Qin XJ, et al. Notch 1 inhibition reduces low shear stress-induced plaque formation. Int J Biochem Cell Biol. 2016;72:63-72. https://doi.org/10.1016/j.biocel.2016.01.007.

[31]

Huang H, Ren P, Zhao Y, et al. Low shear stress induces inflammatory response via CX3CR1/NF-kB signal pathway in human umbilical vein endothelial cells. Tissue Cell. 2023;82:102043. https://doi.org/10.1016/j.tice.2023.102043.

[32]

Ye D, Liang W, Dai L, Yao Y. Moderate fluid shear stress could regulate the cytoskeleton of nucleus pulposus and surrounding inflammatory mediators by activating the FAK-MEK5-ERK5-cFos-AP1 signaling pathway. Dis Markers. 2018;2018:9405738. https://doi.org/10.1155/2018/9405738.

[33]

Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: from physiopa-thology to therapy. J Hepatol. 2016;64:1403-1415. https://doi.org/10.1016/j.jhep.2016.02.004.

[34]

Ozaki M. Cellular and molecular mechanisms of liver regeneration: prolifer-ation, growth, death and protection of hepatocytes. Semin Cell Dev Biol. 2020;100:62-73. https://doi.org/10.1016/j.semcdb.2019.10.007.

[35]

Alghamdi T, Atta IS, El-Refaei M. Induction of synthesis of matrix metal-loproteinases by interleukin-6; evidence for hepatic regeneration following hemi-hepatectomy. Clin Exp Hepatol. 2020;6:137-141. https://doi.org/10.5114/ceh.2020.95679.

[36]

Chou CH, Lai SL, Chen CN, et al. IL-6 regulates Mcl-1L expression through the JAK/PI3K/Akt/CREB signaling pathway in hepatocytes: implication of an anti-apoptotic role during liver regeneration. PLoS One. 2013;8:e66268. https://doi.org/10.1371/journal.pone.0066268.

[37]

Skuratovskaia D, Komar A, Vulf M, et al. IL-6 reduces mitochondrial replica-tion, and IL-6 receptors reduce chronic inflammation in NAFLD and type 2 diabetes. Int J Mol Sci. 2021;22:1774. https://doi.org/10.3390/ijms22041774.

[38]

Fazel Modares N, Polz R, Haghighi F, et al. IL-6 trans-signaling controls liver regeneration after partial hepatectomy. Hepatology. 2019;70:2075-2091. https://doi.org/10.1002/hep.30774.

[39]

Preziosi M, Okabe H, Poddar M, Singh S, Monga SP. Endothelial Wnts regulate b-catenin signaling in murine liver zonation and regeneration: a sequel to the Wnt-Wnt situation. Hepatol Commun. 2018;2:845-860. https://doi.org/10.1002/hep4.1196.

[40]

Ma X, Yu Z, Wei J, et al. Effect of fluid shear stress on proliferation of immortalized rats BRL-3A liver cell lines. Chin J Exp Surg. 2016;33: 1534-1537.

[41]

Hohmann N, Wei W, Dahmen U, Dirsch O, Deutsch A,Voss- Böhme A. How does a single cell know when the liver has reached its correct size? PLoS One. 2014;9:e93207. https://doi.org/10.1371/journal.pone.0093207.

[42]

Abshagen K, Eipel C, Kalff JC, Menger MD, Vollmar B. Kupffer cells are mandatory for adequate liver regeneration by mediating hyperperfusion via modulation of vasoactive proteins. Microcirculation. 2008;15:37-47. https://doi.org/10.1080/10739680701412989.

[43]

Nakatani K, Tanaka H, Ikeda K, et al. Expression of NCAM in activated portal fibroblasts during regeneration of the rat liver after partial hepatectomy. Arch Histol Cytol. 2006;69:61-72. https://doi.org/10.1679/aohc.69.61.

[44]

Rohn F, Kordes C, Buschmann T, et al. Impaired integrin a5/b 1 -mediated hepatocyte growth factor release by stellate cells of the aged liver. Aging Cell. 2020;19:e13131. https://doi.org/10.1111/acel.13131.

[45]

Kohler A, Moller PW, Frey S, et al. Portal hyperperfusion after major liver resection and associated sinusoidal damage is a therapeutic target to protect the remnant liver. Am J Physiol Gastrointest Liver Physiol. 2019;317: G264eG274. https://doi.org/10.1152/ajpgi.00113.2019.

[46]

Strickland J, Garrison D, Copple BL. Hypoxia upregulates Cxcl12 in hepato-cytes by a complex mechanism involving hypoxia-inducible factors and transforming growth factor-b. Cytokine. 2020;127:154986. https://doi.org/10.1016/j.cyto.2020.154986.

[47]

Qing Z, Huang H, Yang S, et al. Hypoxia maintains the fenestration of liver sinusoidal endothelial cells and promotes their proliferation through the SENP1/HIF-1a/VEGF signaling axis. Biochem Biophys Res Commun. 2021;540: 42-50. https://doi.org/10.1016/j.bbrc.2020.12.104.

[48]

Kron P, Linecker M, Limani P, et al. Hypoxia-driven Hif2a coordinates mouse liver regeneration by coupling parenchymal growth to vascular expansion. Hepatology. 2016;64:2198-2209. https://doi.org/10.1002/hep.28809.

[49]

Yu J, Yin S, Zhang W, et al. Hypoxia preconditioned bone marrow mesen-chymal stem cells promote liver regeneration in a rat massive hepatectomy model. Stem Cell Res Ther. 2013;4:83. https://doi.org/10.1186/scrt234.

[50]

Mochizuki A, Pace A, Rockwell CE, et al. Hepatic stellate cells orchestrate clearance of necrotic cells in a hypoxia-inducible factor-1a-dependent manner by modulating macrophage phenotype in mice. J Immunol. 2014;192: 3847-3857. https://doi.org/10.4049/jimmunol.1303195.

[51]

Zhou J, Chen J, Wei Q, Saeb-Parsy K, Xu X. The role of ischemia/reperfusion injury in early hepatic allograft dysfunction. Liver Transpl. 2020;26: 1034-1048. https://doi.org/10.1002/lt.25779.

[52]

Wang K, Lu D, Liu Y, et al. Severity of early allograft dysfunction following donation after circulatory death liver transplantation: a multicentre study. Hepatobiliary Surg Nutr. 2021;10:9-19. https://doi.org/10.21037/hbsn.2019.09.02.

[53]

Asencio JM, Vaquero J, Olmedilla L, García Sabrido JL. “Small-for-flow” syn-drome: shifting the “size” paradigm. Med Hypotheses. 2013;80:573-577. https://doi.org/10.1016/j.mehy.2013.01.028.

[54]

Mohamed M, Kang L, Zhang C, et al. Simulating transplant small-for-size grafts using human liver monosegments: the impact of portal perfusion pressure. Transplant Proc. 2019;51:919-924. https://doi.org/10.1016/j.transproceed.2018.12.028.

[55]

Dold S, Richter S, Kollmar O, et al. Portal hyperperfusion after extended hepatectomy does not induce a hepatic arterial buffer response (HABR) but impairs mitochondrial redox state and hepatocellular oxygenation. PLoS One. 2015;10:e0141877. https://doi.org/10.1371/journal.pone.0141877.

[56]

Fondevila C, Hessheimer AJ, Taurá P, et al. Portal hyperperfusion: mecha-nism of injury and stimulus for regeneration in porcine small-for-size transplantation. Liver Transpl. 2010;16:364-374. https://doi.org/10.1002/lt.21989.

[57]

Jiang SM, Zhou GW, Zhang R, et al. Role of splanchnic hemodynamics in liver regeneration after living donor liver transplantation. Liver Transpl. 2009;15: 1043-1049. https://doi.org/10.1002/lt.21797.

[58]

Sanefuji K, Iguchi T, Ueda S, et al. New prediction factors of small-for-size syndrome in living donor adult liver transplantation for chronic liver dis-ease. Transpl Int. 2010;23:350-357. https://doi.org/10.1111/j.1432-2277.2009.00985.x.

[59]

Osman AM, Hosny AA, El-Shazli MA, Uemoto S, Abdelaziz O, Helmy AS. A portal pressure cut-off of 15 versus a cut-off of 20 for prevention of small-for-size syndrome in liver transplantation: a comparative study. Hepatol Res. 2017;47:293-302. https://doi.org/10.1111/hepr.12727.

[60]

Boillot O, Delafosse B, Méchet I, Boucaud C, Pouyet M. Small-for-size partial liver graft in an adult recipient; a new transplant technique. Lancet. 2002;359: 406-407. https://doi.org/10.1016/S0140-6736(02)07593-1.

[61]

Kanetkar AV, Balakrishnan D, Sudhindran S, et al. Is portal venous pressure or porto-systemic gradient really a harbinger of poor outcomes after living donor liver transplantation? J Clin Exp Hepatol. 2017;7:235-246. https://doi.org/10.1016/j.jceh.2017.01.114.

[62]

Ogura Y, Hori T, El Moghazy WM, et al. Portal pressure <15 mm Hg is a key for successful adult living donor liver transplantation utilizing smaller grafts than before. Liver Transpl. 2010;16:718-728. https://doi.org/10.1002/lt.22059.

[63]

Riddiough GE, Christophi C, Jones RM, Muralidharan V, Perini MV. A systematic review of small for size syndrome after major hepatectomy and liver transplantation. HPB (Oxford). 2020;22:487-496. https://doi.org/10.1016/j.hpb.2019.10.2445.

[64]

Singh A, Singhal S, Venuthurimilli A, et al. HPi: a novel parameter to predict graft-related outcome in adult living donor liver transplant. Transplantation. 2022;106:767-780. https://doi.org/10.1097/TP.0000000000003890.

[65]

Troisi R, Cammu G, Militerno G, et al. Modulation of portal graft inflow: a necessity in adult living-donor liver transplantation? Ann Surg. 2003;237: 429-436. https://doi.org/10.1097/01.SLA.0000055277.78876.B7.

[66]

Sanefuji K, Iguchi T, Ueda S, et al. New prediction factors of small-for-size syndrome in living donor adult liver transplantation for chronic liver dis-ease. Transpl Int. 2010;23:350-357. https://doi.org/10.1111/j.1432-2277.2009.00985.x.

[67]

Yao S, Kaido T, Uozumi R, et al. Is portal venous pressure modulation still indicated for all recipients in living donor liver transplantation? Liver Transpl. 2018;24:1578-1588. https://doi.org/10.1002/lt.25180.

[68]

Baker SS, Baker RD. Gut microbiota and liver injury (II): chronic liver injury. Adv Exp Med Biol. 2020;1238:39-54. https://doi.org/10.1007/978-981-15-2385-4_4.

[69]

Leng L, Ma J, Lv L, et al. Serum proteome profiling provides a deep under-standing of the “gut-liver axis” in relation to liver injury and regeneration. Acta Biochim Biophys Sin (Shanghai). 2021;53:372-380. https://doi.org/10.1093/abbs/gmab001.

[70]

He J, Zhang P, Shen L, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci. 2020;21:6356. https://doi.org/10.3390/ijms21176356.

[71]

De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156:84-96. https://doi.org/10.1016/j.cell.2013.12.016.

[72]

Kriss M, Verna EC, Rosen HR, Lozupone CA. Functional microbiomics in liver transplantation: identifying novel targets for improving allograft outcomes. Transplantation. 2019;103:668-678. https://doi.org/10.1097/TP.0000000000002568.

[73]

Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci. 2012;57:3126-3135. https://doi.org/10.1007/s10620-012-2259-4.

[74]

Cornell RP. Restriction of gut-derived endotoxin impairs DNA synthesis for liver regeneration. Am J Physiol. 1985;249:R563eR569. https://doi.org/10.1152/ajpregu.1985.249.5.R563.

[75]

Cornell RP. Gut-derived endotoxin elicits hepatotrophic factor secretion for liver regeneration. Am J Physiol. 1985;249:R551eR562. https://doi.org/10.1152/ajpregu.1985.249.5.R551.

[76]

Song K, Kwon H, Han C, et al. Yes-associated protein in kupffer cells enhances the production of proinflammatory cytokines and promotes the development of nonalcoholic steatohepatitis. Hepatology. 2020;72:72-87. https://doi.org/10.1002/hep.30990.

[77]

Nolan JP. The role of intestinal endotoxin in liver injury: a long and evolving history. Hepatology. 2010;52:1829-1835. https://doi.org/10.1002/hep.23917.

[78]

Rao R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology. 2009;50:638-644. https://doi.org/10.1002/hep.23009.

[79]

Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13:1324-1332. https://doi.org/10.1038/nm1663.

[80]

Ito A, Higashiguchi T. Effects of glutamine administration on liver regenera-tion following hepatectomy. Nutrition. 1999;15:23-28. https://doi.org/10.1016/s0899-9007(98)00133-6.

[81]

Kakiyama G, Pandak WM, Gillevet PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol. 2013;58:949-955. https://doi.org/10.1016/j.jhep.2013.01.003.

[82]

Sayin SI, Wahlström A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17:225-235. https://doi.org/10.1016/j.cmet.2013.01.003.

[83]

Tripathi A, Debelius J, Brenner DA, et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol. 2018;15:397-411. https://doi.org/10.1038/s41575-018-0011-z.

[84]

Zhu C, Dong B, Sun L, Wang Y, Chen S. Cell sources and influencing factors of liver regeneration: a review. Med Sci Monit. 2020;26:e929129. https://doi.org/10.12659/MSM.929129.

[85]

Xie G, Wang X, Zhao A, et al. Sex-dependent effects on gut microbiota regulate hepatic carcinogenic outcomes. Sci Rep. 2017;7:45232. https://doi.org/10.1038/srep45232.

[86]

Xu Z, Jiang N, Xiao Y, Yuan K, Wang Z. The role of gut microbiota in liver regeneration. Front Immunol. 2022;13:1003376. https://doi.org/10.3389/fimmu.2022.1003376.

[87]

Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9:3294. https://doi.org/10.1038/s41467-018-05470-4.

[88]

Natividad JM, Agus A, Planchais J, et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syn-drome. Cell Metab. 2018;28:737e 749 (e4). https://doi.org/10.1016/j.cmet.2018.07.001.

[89]

Gutiérrez-Vázquez C, Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018;48:19-33. https://doi.org/10.1016/j.immuni.2017.12.012.

[90]

Venkatesh M, Mukherjee S, Wang H, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014;41:296-310. https://doi.org/10.1016/j.immuni.2014.06.014.

[91]

Sun R, Gao B. Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon-gamma). Gastroenterology. 2004;127: 1525-1539. https://doi.org/10.1053/j.gastro.2004.08.055.

[92]

Ewaschuk J, Endersby R, Thiel D, et al. Probiotic bacteria prevent hepatic damage and maintain colonic barrier function in a mouse model of sepsis. Hepatology. 2007;46:841-850. https://doi.org/10.1002/hep.21750.

[93]

Engevik MA, Danhof HA, Ruan W, et al. Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation. mBio. 2021;12:e02706ee02720. https://doi.org/10.1128/mBio.02706-20.

[94]

Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis reg-ulates progression of NAFLD and obesity. Nature. 2012;482:179-185. https://doi.org/10.1038/nature10809.

[95]

Donkor ON, Ravikumar M, Proudfoot O, et al. Cytokine profile and induction of T helper type 17 and regulatory T cells by human peripheral mononuclear cells after microbial exposure. Clin Exp Immunol. 2012;167:282-295. https://doi.org/10.1111/j.1365-2249.2011.04496.x.

[96]

Bauché D, Marie JC. Transforming growth factor b: a master regulator of the gut microbiota and immune cell interactions. Clin Transl Immunology. 2017;6: e136. https://doi.org/10.1038/cti.2017.9.

[97]

Petersen ER, Claesson MH, Schmidt EG, et al. Consumption of probiotics in-creases the effect of regulatory T cells in transfer colitis. Inflamm Bowel Dis. 2012;18:131-142. https://doi.org/10.1002/ibd.21709.

[98]

Xie C, Zhang Z, Yang M, et al. Lactiplantibacillus plantarum AR113 exhibit accelerated liver regeneration by regulating gut microbiota and plasma glycerophospholipid. Front Microbiol. 2022;12:800470. https://doi.org/10.3389/fmicb.2021.800470.

[99]

Kalinin EV, Chalenko YM, Sysolyatina EV, et al. Bacterial hepatocyte growth factor receptor agonist stimulates hepatocyte proliferation and accelerates liver regeneration in a partial hepatectomy rat model. Drug Dev Res. 2021;82: 123-132. https://doi.org/10.1002/ddr.21737.

[100]

Schnitzbauer AA, Lang SA, Goessmann H, et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hyper-trophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg. 2012;255:405-414. https://doi.org/10.1097/SLA.0b013e31824856f5.

[101]

Lauber DT, Tihanyi DK, Czigány Z, et al. Liver regeneration after different degrees of portal vein ligation. J Surg Res. 2016;203:451-458. https://doi.org/10.1016/j.jss.2016.03.032.

[102]

Hwang S, Lee SG, Ko GY, et al. Sequential preoperative ipsilateral hepatic vein embolization after portal vein embolization to induce further liver regener-ation in patients with hepatobiliary malignancy. Ann Surg. 2009;249: 608-616. https://doi.org/10.1097/SLA.0b013e31819ecc5c.

[103]

Araki K, Shibuya K, Harimoto N, et al. A prospective study of sequential he-patic vein embolization after portal vein embolization in patients scheduled for right-sided major hepatectomy: results of feasibility and surgical strategy using functional liver assessment. J Hepatobiliary Pancreat Sci. 2023;30: 91-101. https://doi.org/10.1002/jhbp.1207.

[104]

Panaro F, Giannone F, Riviere B, et al. Perioperative impact of liver venous deprivation compared with portal venous embolization in patients under-going right hepatectomy: preliminary results from the pioneer center. Hep-atobiliary Surg Nutr. 2019;8:329-337. https://doi.org/10.21037/hbsn.2019.07.06.

[105]

Gavriilidis P, Marangoni G, Ahmad J, Azoulay D. Simultaneous portal and hepatic vein embolization is better than portal embolization or ALPPS for hypertrophy of future liver remnant before major hepatectomy: a systematic review and network meta-analysis. Hepatobiliary Pancreat Dis Int. 2023;22: 221-227. https://doi.org/10.1016/j.hbpd.2022.08.013.

[106]

Troisi RI, Vanlander A, Giglio MC, et al. Somatostatin as inflow modulator in liver-transplant recipients with severe portal hypertension: a randomized trial. Ann Surg. 2019;269:1025-1033. https://doi.org/10.1097/SLA.0000000000003062.

[107]

Hessheimer AJ, Escobar B, Mu-noz J, et al. Somatostatin therapy protects porcine livers in small-for-size liver transplantation. Am J Transplant. 2014;14: 1806-1816. https://doi.org/10.1111/ajt.12758.

[108]

Xu X, Man K, Zheng SS, et al. Attenuation of acute phase shear stress by so-matostatin improves small-for-size liver graft survival. Liver Transpl. 2006;12: 621-627. https://doi.org/10.1002/lt.20630.

[109]

Onoe T, Tanaka Y, Ide K, et al. Attenuation of portal hypertension by contin-uous portal infusion of PGE1 and immunologic impact in adult-to-adult living-donor liver transplantation. Transplantation. 2013;95:1521-1527. https://doi.org/10.1097/TP.0b013e31829150a4.

[110]

Ren Z, Xu Y, Zhu S. The effect of terlipressin on hepatic hemodynamics in small-for-size livers. Hepatogastroenterology. 2012;59:208-211. https://doi.org/10.5754/hge11288.

[111]

Yamanaka K, Hatano E, Narita M, et al. Olprinone attenuates excessive shear stress through up-regulation of endothelial nitric oxide synthase in a rat excessive hepatectomy model. Liver Transpl. 2011;17:60-69. https://doi.org/10.1002/lt.22189.

[112]

Pinter M, Sieghart W, Reiberger T, Rohr-Udilova N, Ferlitsch A, Peck-Radosavljevic M. The effects of sorafenib on the portal hypertensive syn-drome in patients with liver cirrhosis and hepatocellular carcinoma-a pilot study. Aliment Pharmacol Ther. 2012;35:83-91. https://doi.org/10.1111/j.1365-2036.2011.04896.x.

[113]

Gruttadauria S, Pagano D, Liotta R, et al. Liver volume restoration and hepatic microarchitecture in small-for-size syndrome. Ann Transplant. 2015;20: 381-389. https://doi.org/10.12659/AOT.894082.

[114]

Hou P, Chen C, Tu YL, Zhu ZM, Tan JW. Extracorporeal continuous portal diversion plus temporal plasmapheresis for “small-for-size” syndrome. World J Gastroenterol. 2013;19:5464-5472. https://doi.org/10.3748/wjg.v19.i33.5464.

[115]

Baccarani U, Pravisani R, Luigi Adani G, et al. Safety and efficacy of splenic artery embolization for portal hyperperfusion in liver transplant recipients: a 5- year experience. Liver Transpl. 2015;21:1457-1458. https://doi.org/10.1002/lt.24146.

[116]

Xiao L, Li F, Wei B, Li B, Tang CW. Small-for-size syndrome after living donor liver transplantation: successful treatment with a transjugular intrahepatic portosystemic shunt. Liver Transpl. 2012;18:1118-1120. https://doi.org/10.1002/lt.23457.

[117]

Zhang HL, Yu LX, Yang W, et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J Hepatol. 2012;57:803-812. https://doi.org/10.1016/j.jhep.2012.06.011.

[118]

Li J, Sung CY, Lee N, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci U S A. 2016;113: E1306eE1315. https://doi.org/10.1073/pnas.1518189113.

[119]

Ma YY, Li L, Yu CH, Shen Z, Chen LH, Li YM. Effects of probiotics on nonal-coholic fatty liver disease: a meta-analysis. World J Gastroenterol. 2013;19: 6911-6918. https://doi.org/10.3748/wjg.v19.i40.6911.

[120]

Ferrere G, Wrzosek L, Cailleux F, et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol. 2017;66: 806-815. https://doi.org/10.1016/j.jhep.2016.11.008.

[121]

Hamza AR, Krasniqi AS, Srinivasan PK, et al. Gut-liver axis improves with meloxicam treatment after cirrhotic liver resection. World J Gastroenterol. 2014;20:14841-14854. https://doi.org/10.3748/wjg.v20.i40.14841.

[122]

Liu HX, Hu Y, Wan YJ. Microbiota and bile acid profiles in retinoic acid-primed mice that exhibit accelerated liver regeneration. Oncotarget. 2016;7: 1096-1106. https://doi.org/10.18632/oncotarget.6665.

[123]

Ponziani FR, Zocco MA, D’Aversa F, Pompili M, Gasbarrini A. Eubiotic prop-erties of rifaximin: disruption of the traditional concepts in gut microbiota modulation. World J Gastroenterol. 2017;23:4491-4499. https://doi.org/10.3748/wjg.v23.i25.4491.

[124]

Carbajo-Pescador S, Porras D, García-Mediavilla MV, et al. Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an in vivo model of early obesity and non-alcoholic fatty liver disease. Dis Model Mech. 2019;12:dmm039206. https://doi.org/10.1242/dmm.039206.

[125]

Bajaj JS, Idilman R, Mabudian L, et al. Diet affects gut microbiota and modu-lates hospitalization risk differentially in an international cirrhosis cohort. Hepatology. 2018;68:234-247. https://doi.org/10.1002/hep.29791.

[126]

Bajaj JS, Kassam Z, Fagan A, et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology. 2017;66:1727-1738. https://doi.org/10.1002/hep.29306.

[127]

Philips CA, Pande A, Shasthry SM, et al. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study. Clin Gastroenterol Hepatol. 2017;15:600-602. https://doi.org/10.1016/j.cgh.2016.10.029.

PDF (1160KB)

40

Accesses

0

Citation

Detail

Sections
Recommended

/