A reductive uric acid degradation pathway in anaerobic bacteria

Zhi Li , Wei Meng , Zihan Gao , Wanli Peng , Zhandong Hu , Jianhao Zhang , Yining Wang , Xiaoxia Wu , Zipeng Zhao , Chuyuan Zhang , Zhuohao Tang , Zhujun Nie , Shaohua Wu , Benjuan Wu , Hui Zheng , Duqiang Luo , Yang Tong , Yiling Hu , Zehan Hu , Yifeng Wei , Yan Zhang

Life Metabolism ›› 2025, Vol. 4 ›› Issue (6) : loaf031

PDF (4894KB)
Life Metabolism ›› 2025, Vol. 4 ›› Issue (6) :loaf031 DOI: 10.1093/lifemeta/loaf031
Original Article

A reductive uric acid degradation pathway in anaerobic bacteria

Author information +
History +
PDF (4894KB)

Abstract

Uric acid (UA) is a key intermediate in purine degradation across diverse organisms, while its accumulation in humans leads to inflammation and gout disease. Aerobic organisms degrade UA via a well-known “oxidative pathway” involving dearomatization of the purine core catalyzed by UA oxidases or dehydrogenases. The ability to degrade UA is also widespread in anaerobic bacteria, including gut bacteria, although the mechanisms are incompletely understood. Here, we report the biochemical characterization of a recently identified UA degradation gene cluster from Escherichia coli, and show that it encodes a “reductive pathway” for UA degradation. In this pathway, UA is first reduced to 2,8-dioxopurine (yanthine) by a xanthine dehydrogenase homolog (XdhD), followed by dearomatization of the purine core catalyzed by a flavin-dependent reductase (YgfK). Stepwise cleavage of the pyrimidine and imidazole rings forms 2,3-diureidopropionate, and stepwise cleavage of the 2- and 3-ureido groups then forms 2,3-diaminopropionate, which is cleaved by a pyridoxal 5′-phosphate-dependent lyase (YgeX) to pyruvate and ammonia. The detection of yanthine in clinical serum samples from healthy individuals and significantly higher levels from gout patients suggests that yanthine is a physiologically relevant circulating metabolite. A probiotic E. coli Nissle strain was engineered for constitutive overexpression of the gene cluster, and oral administration in a uricase-knockout hyperuricemic mouse model significantly reduced the serum UA level and alleviated associated kidney injury, suggesting a potential route towards uricolytic probiotics.

Keywords

uric acid / yanthine / gout / CBT2.0

Cite this article

Download citation ▾
Zhi Li, Wei Meng, Zihan Gao, Wanli Peng, Zhandong Hu, Jianhao Zhang, Yining Wang, Xiaoxia Wu, Zipeng Zhao, Chuyuan Zhang, Zhuohao Tang, Zhujun Nie, Shaohua Wu, Benjuan Wu, Hui Zheng, Duqiang Luo, Yang Tong, Yiling Hu, Zehan Hu, Yifeng Wei, Yan Zhang. A reductive uric acid degradation pathway in anaerobic bacteria. Life Metabolism, 2025, 4(6): loaf031 DOI:10.1093/lifemeta/loaf031

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Roman YM . The role of uric acid in human health:insights from the uricasegene. J Pers Med 2023; 13: 1409.

[2]

Liu Y , Jarman JB , Low YS et al. A widely distributed gene cluster compensates for uricase loss in hominids. Cell 2023; 186: 3400- 13.e20.

[3]

Wu XW , Muzny DM , Lee CC et al. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol 1992; 34: 78- 84.

[4]

Chen C , Lu JM , Yao Q . Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: an overview. Med Sci Monit 2016; 22: 2501- 12.

[5]

El Ridi R , Tallima H . Physiological functions and pathogenic potential of uric acid:a review. J Adv Res 2017; 8: 487- 93.

[6]

Ames BN , Cathcart R , Schwiers E et al. Uric acid provides an antioxidant defense in humans against oxidant- and radicalcaused aging and cancer:a hypothesis. Proc Natl Acad Sci USA 1981; 78: 6858- 62.

[7]

Barsoum R , El-Khatib M . Uric acid and life on earth. J Adv Res 2017; 8: 471- 4.

[8]

Weihrauch D , O'Donnell MJ . Mechanisms of nitrogen excretion in insects. Curr Opin Insect Sci 2021; 47: 25- 30.

[9]

Garavito MF , Narvaez-Ortiz HY , Zimmermann BH . Pyrimidine metabolism:dynamic and versatile pathways in pathogens and cellular development. J Genet Genomics 2015; 42: 195- 205.

[10]

Yin J , Wei Y , Liu D et al. An extended bacterial reductive pyrimidine degradation pathway that enables nitrogen release from β-alanine. J Biol Chem 2019; 294: 15662- 71.

[11]

Adak S , Begley TP . Chapter seventeen-Flavin-N5-oxide intermediates in dibenzothiophene, uracil, and hexachlorobenzene catabolism. In: Palfey BA (ed.) Methods in Enzymology: Academic Press; 2019. 455- 68.

[12]

Kim KS , Pelton JG , Inwood WB et al. The Rut pathway for pyrimidine degradation:novel chemistry and toxicity problems. J Bacteriol 2010; 192: 4089- 102.

[13]

Andersen G , Bjornberg O , Polakova S et al. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes. J Mol Biol 2008; 380: 656- 66.

[14]

Zhang HB , Wei YF , Lin LY et al. Structural and biochemical investigation of UTP cyclohydrolase. ACS Catal 2021; 11: 8895- 901.

[15]

Wang CH , Zhang C , Xing XH . Xanthine dehydrogenase:an old enzyme with new knowledge and prospects. Bioengineered 2016; 7: 395- 405.

[16]

Schultz AC , Nygaard P , Saxild HH . Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. J Bacteriol 2001; 183: 3293- 302.

[17]

Hicks KA , O'Leary SE , Begley TP et al. Structural and mechanistic studies of HpxO, a novel flavin adenine dinucleotidedependent urate oxidase from Klebsiella pneumoniae. Biochemistry 2013; 52: 477- 87.

[18]

Gabison L , Prange T , Colloc'h N et al. Structural analysis of urate oxidase in complex with its natural substrate inhibited by cyanide: mechanistic implications. BMC Struct Biol 2008; 8: 32.

[19]

Doniselli N , Monzeglio E , Dal Palu A et al. The identification of an integral membrane, cytochrome c urate oxidase completes the catalytic repertoire of a therapeutic enzyme. Sci Rep 2015; 5: 13798.

[20]

Rodrigues JT , Mamede I , Franco GR et al. Unveiling overlooked pathways: the uric acid catabolism genes in the human genome. Biochimie 2024; 227: 68- 76.

[21]

Barker HA , Beck JV . Clostridium acidi-uridi and Clostridium cylindrosporum, organisms fermenting uric acid and some other purines. J Bacteriol 1942; 43: 291- 304.

[22]

Rabinowitz JC , Barker HA . Purine fermentation by Clostridium cylindrosporum. I. Tracer experiments on the fermentation of guanine. J Biol Chem 1956; 218: 147- 60.

[23]

Rabinowitz JC , Pricer WE Jr . Purine fermentation by Clostridium cylindrosporum. IV. 4-Ureido-5-imidazolecarboxylic acid. J Biol Chem 1956; 218: 189- 99.

[24]

Tong Y , Wei Y , Ju Y et al. Anaerobic purinolytic enzymes enable dietary purine clearance by engineered gut bacteria. Cell Chem Biol 2023; 30: 1104- 14.e7.

[25]

Mead GC . Anaerobic utilization of uric acid by some group D streptococci. J Gen Microbiol 1974; 82: 421- 3.

[26]

Reece P , Toth D , Dawes EA . Fermentation of purines and their effect on the adenylate energy charge and viability of starved Peptococcus prévotii. J Gen Microbiol 1976; 97: 63- 71.

[27]

Potrikus CJ , Breznak JA . Uric acid-degrading bacteria in guts of termites[Reticulitermes flavipes (Kollar)]. Appl Environ Microbiol 1980; 40: 117- 24.

[28]

Schiefer-Ullrich H , Andreesen JR . Peptostreptococcus barnesae sp. nov., a Gram-positive, anaerobic, obligately purine utilizing coccus from chicken feces. Arch Microbiol 1985; 143: 26- 31.

[29]

Xi H , Schneider BL , Reitzer L . Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol 2000; 182: 5332- 41.

[30]

Iwadate Y , Kato JI . Identification of a formate-dependent uric acid degradation pathway in Escherichia coli. J Bacteriol 2019; 201: e00573- 18.

[31]

Papakostas K , Frillingos S . Substrate selectivity of YgfU, a uric acid transporter from Escherichia coli. J Biol Chem 2012; 287: 15684- 95.

[32]

Kasahara K , Kerby RL , Zhang Q et al. Gut bacterial metabolism contributes to host global purine homeostasis. Cell Host Microbe 2023; 31: 1038- 53.e10.

[33]

Johnstone MA , Self WT . Clostridioides difficile exploits xanthine and uric acid as nutrients by utilizing a selenium-dependent catabolic pathway. Microbiol Spectr 2024; 12: e0084424.

[34]

Uo T , Yoshimura T , Nishiyama T et al. Gene cloning, purification, and characterization of 2,3-diaminopropionate ammonia-lyase from Escherichia coli. Biosci Biotechnol Biochem 2002; 66: 2639- 44.

[35]

Wang F , Wei Y , Lu Q et al. A ferredoxin-dependent dihydropyrimidine dehydrogenase in Clostridium chromiireducens. Biosci Rep 2020; 40: BSR20201642.

[36]

Potrikus CJ , Breznak JA . Anaerobic degradation of uric acid by gut bacteria of termites. Appl Environ Microbiol 1980; 40: 125- 32.

[37]

Ma K , Xue B , Chu R et al. A widespread radical-mediated glycolysis pathway. J Am Chem Soc 2024; 146: 26187- 97.

[38]

Jiang L , Yang YQ , Huang L et al. Glycyl radical enzymes catalyzing the dehydration of two isomers of methyl-4-hydroxyproline. ACS Catal 2024; 14: 4407- 22.

[39]

Wu X , Wakamiya M , Vaishnav S et al. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci USA 1994; 91: 742- 6.

[40]

Liu Y , Chen H , Van Treuren W et al. Clostridium sporogenes uses reductive Stickland metabolism in the gut to generate ATP and produce circulating metabolites. Nat Microbiol 2022; 7: 695- 706.

[41]

Zhao R , Li Z , Sun Y et al. Engineered Escherichia coli Nissle 1917 with urate oxidase and an oxygen-recycling system for hyperuricemia treatment. Gut Microbes 2022; 14: 2070391.

[42]

Wang W , Pan L , He H et al. Systematic engineering for efficient uric acid-degrading activity in probiotic yeast Saccharomyces boulardii. ACS Synth Biol 2025; 14: 2030- 43.

[43]

Hoque KM , Dixon EE , Lewis RM et al. The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion. Nat Commun 2020; 11: 2767.

[44]

Liu JY , Wei YF , Ma KL et al. Mechanistically diverse pathways for sulfoquinovose degradation in bacteria. ACS Catal 2021; 11: 14740- 50.

[45]

Jiang Y , Chen B , Duan C et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 2015; 81: 2506- 14.

[46]

Anders S , Pyl PT , Huber W . HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 2014; 31: 166- 9.

[47]

Love MI , Huber W , Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550.

[48]

Causse E , Pradelles A , Dirat B et al. Simultaneous determination of allantoin, hypoxanthine, xanthine, and uric acid in serum/plasma by CE. Electrophoresis 2007; 28: 381- 7.

[49]

Xu YX , Liu LD , Zhu JY et al. Alistipes indistinctus-derived hippuric acid promotes intestinal urate excretion to alleviate hyperuricemia. Cell Host Microbe 2024; 32: 366- 81.e9.

[50]

Oberg N , Zallot R , Gerlt JA . EFI-EST, EFI-GNT, and EFI-CGFP: enzyme function initiative (EFI) web resource for genomic enzymology tools. J Mol Biol 2023; 435: 168018.

[51]

Shannon P , Markiel A , Ozier O et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498- 504.

RIGHTS & PERMISSIONS

The Author(s). Published by Oxford University Press on behalf of Higher Education Press.

PDF (4894KB)

Supplementary files

Supplementary materials

108

Accesses

0

Citation

Detail

Sections
Recommended

/