Cryo-EM structure of the human MON1A-CCZ1-RAB7A complex provides insights into nucleotide exchange mechanism

Xinna Li , Dan Li , Dan Tang , Xiaofang Huang , Hui Bao , Jiawei Wang , Shiqian Qi

Life Metabolism ›› 2025, Vol. 4 ›› Issue (5) : loaf017

PDF (3308KB)
Life Metabolism ›› 2025, Vol. 4 ›› Issue (5) : loaf017 DOI: 10.1093/lifemeta/loaf017
Original Article

Cryo-EM structure of the human MON1A-CCZ1-RAB7A complex provides insights into nucleotide exchange mechanism

Author information +
History +
PDF (3308KB)

Abstract

Autophagy is a fundamental cellular process, conserved across species from yeast to mammals, that plays a crucial role in maintaining cellular homeostasis. The functionally conserved MON1-CCZ1 (MC1) complex serves as a guanine nucleotide exchange factor (GEF) for the RAB GTPase RAB7A and is indispensable for directing RAB7A recruitment to autophagosome or lysosomal membranes. Despite its critical role, the precise molecular mechanism underlying the assembly of the human MON1A-CCZ1 (HsMC1) complex and its specific GEF activity towards RAB7A has remained unclear. In this study, we report the high-resolution cryo-electron microscopy (cryo-EM) structure of the HsMC1 GEF domain in a complex with the nucleotide-free RAB7AN125I at 2.85 Å resolution. Our structural data demonstrate that engagement with the HsMC1 complex induces marked conformational shifts in the phosphate-binding loop (P-loop) and Switch I/II regions of RAB7A. A striking feature of this complex is the direct interaction between the P-loop of RAB7A and CCZ1, a structural detail not previously observed. Furthermore, biochemical assays targeting residues within Interface I or II of the HsMC1-RAB7A complex highlight their critical role in mediating the interaction and suggest a unique mechanism for nucleotide exchange facilitated by the HsMC1 complex. These findings provide novel molecular insights into the functional mechanisms of the HsMC1-RAB7A complex, offering a robust structural framework to inform future investigations into disease-related targets and therapeutic development.

Keywords

RAB7A / MON1A-CCZ1 / autophagy / nucleotide exchange mechanism / guanine nucleotide exchange factor / cryo-electron microscopy

Cite this article

Download citation ▾
Xinna Li, Dan Li, Dan Tang, Xiaofang Huang, Hui Bao, Jiawei Wang, Shiqian Qi. Cryo-EM structure of the human MON1A-CCZ1-RAB7A complex provides insights into nucleotide exchange mechanism. Life Metabolism, 2025, 4(5): loaf017 DOI:10.1093/lifemeta/loaf017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chakravarti B , Akhtar Siddiqui J , Anthony Sinha R et al. Targeting autophagy and lipid metabolism in cancer stem cells. Biochem Pharmacol 2023; 212: 115550.

[2]

Lin PW , Chu ML , Liu HS . Autophagy and metabolism. Kaohsiung J Med Sci 2021; 37: 12- 9.

[3]

Kimmelman AC , White E . Autophagy and tumor metabolism. Cell Metab 2017; 25: 1037- 43.

[4]

Filomeni G , De Zio D , Cecconi F . Oxidative stress and autophagy:the clash between damage and metabolic needs. Cell Death Differ 2015; 22: 377- 88.

[5]

Kim KH , Lee MS . Autophagy-a key player in cellular and body metabolism. Nat Rev Endocrinol 2014; 10: 322- 37.

[6]

Singh R , Kaushik S , Wang Y et al. Autophagy regulates lipid metabolism. Nature 2009; 458: 1131- 5.

[7]

Dacks JB , Peden AA , Field MC . Evolution of specificity in the eukaryotic endomembrane system. Int J Biochem Cell Biol 2009; 41: 330- 40.

[8]

Stenmark H . Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10: 513- 25.

[9]

Homma Y , Hiragi S , Fukuda M . Rab family of small GTPases:an updated view on their regulation and functions. FEBS J 2021; 288: 36- 55.

[10]

Morgan NE , Cutrona MB , Simpson JC . Multitasking Rab proteins in autophagy and membrane trafficking:a focus on Rab33b. Int J Mol Sci 2019; 20: 3916.

[11]

Bento CF , Puri C , Moreau K et al. The role of membranetrafficking small GTPases in the regulation of autophagy. J Cell Sci 2013; 126: 1059- 69.

[12]

Evergren E , Mills IG , Kennedy G . Adaptations of membrane trafficking in cancer and tumorigenesis. J Cell Sci 2024; 137: jcs260943.

[13]

Xu S , Cao B , Xuan G et al. Function and regulation of Rab GTPases in cancers. Cell Biol Toxicol 2024; 40: 28.

[14]

Schreij AM , Fon EA , McPherson PS . Endocytic membrane trafficking and neurodegenerative disease. Cell Mol Life Sci 2016; 73: 1529- 45.

[15]

Chua CE , Tang BL . Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cell Mol Life Sci 2015; 72: 2289- 304.

[16]

Wu SY , Wu HT , Wang YC et al. Secretory autophagy promotes RAB37-mediated insulin secretion under glucose stimulation both in vitro and in vivo. Autophagy 2023; 19: 1239- 57.

[17]

Smith DM , Liu BY , Wolfgang MJ . Rab30 facilitates lipid homeostasis during fasting. Nat Commun 2024; 15: 4469.

[18]

Seitz S , Kwon Y , Hartleben G et al. Hepatic Rab24 controls blood glucose homeostasis via improving mitochondrial plasticity. Nat Metab 2019; 1: 1009- 26.

[19]

Sun J , Yan L , Chen Y et al. TFAM-mediated intercellular lipid droplet transfer promotes cadmium-induced mice nonalcoholic fatty liver disease. J Hazard Mater 2024; 465: 133151.

[20]

Cherfils J , Zeghouf M . Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013; 93: 269- 309.

[21]

Blümer J , Rey J , Dehmelt L et al. RabGEFs are a major determinant for specific Rab membrane targeting. J Cell Biol 2013; 200: 287- 300.

[22]

Langemeyer L , Nunes Bastos R , Cai Y et al. Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation. Elife 2014; 3: e01623.

[23]

Pfeffer SR . Structural clues to Rab GTPase functional diversity. J Biol Chem 2005; 280: 15485- 8.

[24]

Vetter IR . The structure of the G domain of the Ras superfamily. In: Wittinghofer A (ed.), Ras Superfamily Small G Proteins: Biology and Mechanisms 1: General Features, Signaling. Vienna: Springer Vienna, 2014, 25- 50.

[25]

Ke PY . Molecular mechanism of autophagosome-lysosome fusion in mammalian cells. Cells 2024; 13: 500.

[26]

Guerra F , Bucci C . Multiple roles of the small GTPase Rab7. Cells 2016; 5: 34.

[27]

Kuchitsu Y , Homma Y , Fujita N et al. Rab7 knockout unveils regulated autolysosome maturation induced by glutamine starvation. J Cell Sci 2018; 131: jcs215442.

[28]

Sun M , Luong G , Plastikwala F et al. Control of Rab7a activity and localization through endosomal type Igamma PIP 5-kinase is required for endosome maturation and lysosome function. FASEB J 2020; 34: 2730- 48.

[29]

Nordmann M , Cabrera M , Perz A et al. The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr Biol 2010; 20: 1654- 9.

[30]

Rossi V , Banfield DK , Vacca M et al. Longins and their longin domains:regulated SNAREs and multifunctional SNARE regulators. Trends Biochem Sci 2004; 29: 682- 8.

[31]

Cabrera M , Nordmann M , Perz A et al. The Mon1-Ccz1 GEF activates the Rab7 GTPase Ypt7 via a longin-fold-Rab interface and association with PI3P-positive membranes. J Cell Sci 2014; 127: 1043- 51.

[32]

Lawrence G , Brown CC , Flood BA et al. Dynamic association of the PI3P-interacting Mon1-Ccz1 GEF with vacuoles is controlled through its phosphorylation by the type 1 casein kinase Yck3. Mol Biol Cell 2014; 25: 1608- 19.

[33]

van den Boomen DJH , Sienkiewicz A , Berlin I et al. A trimeric Rab7 GEF controls NPC1-dependent lysosomal cholesterol export. Nat Commun 2020; 11: 5559.

[34]

Dehnen L , Janz M , Verma JK et al. A trimeric metazoan Rab7 GEF complex is crucial for endocytosis and scavenger function. J Cell Sci 2020; 133: jcs247080.

[35]

Seaman MNJ , Mukadam AS , Breusegem SY . Inhibition of TBC1D5 activates Rab7a and can enhance the function of the retromer cargo-selective complex. J Cell Sci 2018; 131: jcs217398.

[36]

Jin X , Wang K , Wang L et al. RAB7 activity is required for the regulation of mitophagy in oocyte meiosis and oocyte quality control during ovarian aging. Autophagy 2022; 18: 643- 60.

[37]

Yan BR , Li T , Coyaud E et al. C5orf51 is a component of the MON1-CCZ1 complex and controls RAB7A localization and stability during mitophagy. Autophagy 2022; 18: 829- 40.

[38]

Gao J , Langemeyer L , Kümmel D et al. Molecular mechanism to target the endosomal Mon1-Ccz1 GEF complex to the preautophagosomal structure. Elife 2018; 7: e31145.

[39]

Hegedűs K , Takáts S , Boda A et al. The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy. Mol Biol Cell 2016; 27: 3132- 42.

[40]

Xing Y , Huang L , Jian Y et al. GORASP2 promotes phagophore closure and autophagosome maturation into autolysosomes. Autophagy 2025; 21: 37- 53.

[41]

Klink BU , Herrmann E , Antoni C et al. Structure of the Mon1- Ccz1 complex reveals molecular basis of membrane binding for Rab7 activation. Proc Natl Acad Sci U S A 2022; 119: e2121494119.

[42]

Kiontke S , Langemeyer L , Kuhlee A et al. Architecture and mechanism of the late endosomal Rab7-like Ypt7 guanine nucleotide exchange factor complex Mon1-Ccz1. Nat Commun 2017; 8: 14034.

[43]

Herrmann E , Schäfer JH , Wilmes S et al. Structure of the metazoan Rab7 GEF complex Mon1-Ccz1-Bulli. Proc Natl Acad Sci USA 2023; 120: e2301908120.

[44]

Yong X , Jia G , Liu Z et al. Cryo-EM structure of the Mon1-Ccz1- RMC1 complex reveals molecular basis of metazoan RAB7A activation. Proc Natl Acad Sci USA 2023; 120: e2301725120.

[45]

Müller MP , Goody RS . Molecular control of Rab activity by GEFs, GAPs and GDI. Small GTPases 2018; 9: 5- 21.

[46]

Herrmann E , Langemeyer L , Auffarth K et al. Targeting of the Mon1-Ccz1 Rab guanine nucleotide exchange factor to distinct organelles by a synergistic protein and lipid code. J Biol Chem 2023; 299: 102915.

[47]

Delprato A , Merithew E , Lambright DG . Structure, exchange determinants, and family-wide Rab specificity of the tandem helical bundle and Vps9 domains of Rabex-5. Cell 2004; 118: 607- 17.

[48]

Gromadski KB , Schümmer T , Strømgaard A et al. Kinetics of the interactions between yeast elongation factors 1A and 1Bα, guanine nucleotides, and aminoacyl-tRNA. J Biol Chem 2007; 282: 35629- 37.

[49]

Bos JL , Rehmann H , Wittinghofer A . GEFs and GAPs:critical elements in the control of small G proteins. Cell 2007; 129: 865- 77.

[50]

Jenkins ML , Margaria JP , Stariha JTB et al. Structural determinants of Rab11 activation by the guanine nucleotide exchange factor SH3BP5. Nat Commun 2018; 9: 3772.

[51]

Su MY , Fromm SA , Zoncu R et al. Structure of the C9orf72 ARF GAP complex that is haploinsufficient in ALS and FTD. Nature 2020; 585: 251- 5.

[52]

Tang D , Sheng J , Xu L et al. Cryo-EM structure of C9ORF72- SMCR8-WDR41 reveals the role as a GAP for Rab8a and Rab11a. Proc Natl Acad Sci U S A 2020; 117: 9876- 83.

[53]

Gray JL , von Delft F , Brennan PE . Targeting the small GTPase superfamily through their regulatory proteins. Angew Chem Int Ed Engl 2020; 59: 6342- 66.

[54]

Guo Z , Hou X , Goody RS et al. Intermediates in the guanine nucleotide exchange reaction of Rab8 protein catalyzed by guanine nucleotide exchange factors Rabin8 and GRAB. J Biol Chem 2013; 288: 32466- 74.

[55]

Sato Y , Fukai S , Ishitani R et al. Crystal structure of the Sec4p. Sec2p complex in the nucleotide exchanging intermediate state. Proc Natl Acad Sci USA 2007; 104: 8305- 10.

[56]

Tang Y , Han Y , Guo Z et al. Mechanistic insights into the GEF activity of the human MON1A/CCZ1/C18orf8 complex. Protein Cell 2025; 56: pwaf018.

[57]

Mercier E , Girodat D , Wieden HJ . A conserved P-loop anchor limits the structural dynamics that mediate nucleotide dissociation in EF-Tu. Sci Rep 2015; 5: 7677.

[58]

Liu C , Li Z , Liu Z et al. Understanding the P-Loop conformation in the determination of inhibitor selectivity toward the hepatocellular carcinoma-associated dark kinase STK17B. Front Mol Biosci 2022; 9: 901603.

[59]

Cai CZ , Zhuang XX , Zhu Q et al. Enhancing autophagy maturation with CCZ1-MON1A complex alleviates neuropathology and memory defects in Alzheimer disease models. Theranostics 2022; 12: 1738- 55.

[60]

Monteil V , Kwon H , John L et al. Identification of CCZ1 as an essential lysosomal trafficking regulator in Marburg and Ebola virus infections. Nat Commun 2023; 14: 6785.

[61]

Kinchen JM , Ravichandran KS . Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature 2010; 464: 778- 82.

[62]

Shao X , Liu Y , Yu Q et al. Numb regulates vesicular docking for homotypic fusion of early endosomes via membrane recruitment of Mon1b. Cell Res 2016; 26: 593- 612.

[63]

Jiang L , Qian J , Yang Y et al. Knockdown of MON1B exerts antitumor effects in colon cancer in vitro.Med Sci Monit 2018; 24: 7710- 8.

[64]

Yu J , Yuan Z , Liu J et al. CCZ1 accelerates the progression of cervical squamous cell carcinoma by promoting MMP2/MMP17 expression. Biomedicines 2024; 12: 1468.

[65]

Romano R , Del Fiore VS , Saveri P et al. Autophagy and lysosomal functionality in CMT2B fibroblasts carrying the RAB7K126R mutation. Cells 2022; 11: 496.

[66]

Mulligan RJ , Winckler B . Regulation of endosomal trafficking by Rab7 and its effectors in neurons:clues from Charcot-MarieTooth 2B disease. Biomolecules 2023; 13: 1399.

[67]

Cherry S , Jin EJ , Ozel MN et al. Charcot-Marie-Tooth 2B mutations in rab7 cause dosage-dependent neurodegeneration due to partial loss of function. Elife 2013; 2: e01064.

[68]

Roberts MAJ . Recombinant DNA technology and DNA sequencing. Essays Biochem 2019; 63: 457- 68.

[69]

Bi C , Huang X , Tang D et al. A python script to design sitedirected mutagenesis primers. Protein Sci 2020; 29: 1054- 9.

[70]

Punjani A , Rubinstein JL , Fleet DJ et al. cryoSPARC:algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 2017; 14: 290- 6.

[71]

Zhou N , Wang H , Wang J . EMBuilder:a template matching-based automatic model-building program for high-resolution cryo-electron microscopy maps. Sci Rep 2017; 7: 2664.

[72]

Emsley P , Lohkamp B , Scott WG et al. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010; 66: 486- 501.

[73]

Afonine PV , Poon BK , Read RJ et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct Biol 2018; 74: 531- 44.

[74]

Pettersen EF , Goddard TD , Huang CC et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 2004; 25: 1605- 12.

[75]

Meng EC , Goddard TD , Pettersen EF et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci 2023; 32: e4792.

[76]

DeLano WL . The PyMOL Molecular Graphics System. San Carlos: DeLano Scientific, Palo Alto, CA, USA, 2002.

[77]

Abramson J , Adler J , Dunger J et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024; 630: 493- 500.

[78]

Cai Y , Chin HF , Lazarova D et al. The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell 2008; 133: 1202- 13.

RIGHTS & PERMISSIONS

The Author(s). Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (3308KB)

Supplementary files

Supplementary materials

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/