Function of hematopoiesis and bone marrow niche in inflammation and non-hematopoietic diseases

Yu-xiang Wang , Zhao-hua Deng , Yu-yan Li , Ke Bai , Jinjin Ma , Yang Liu , Qi Chen

Life Medicine ›› 2025, Vol. 4 ›› Issue (3) : lnaf015

PDF (1960KB)
Life Medicine ›› 2025, Vol. 4 ›› Issue (3) : lnaf015 DOI: 10.1093/lifemedi/lnaf015
Review

Function of hematopoiesis and bone marrow niche in inflammation and non-hematopoietic diseases

Author information +
History +
PDF (1960KB)

Abstract

Hematopoiesis and the behavior of hematopoietic stem and progenitor cells (HSPCs) are regulated by the bone marrow niche. Here, we introduce the major niche cell types in bone marrow and their response to stress condition. We highlight the hematopoietic response and bone marrow niche adaptation to inflammatory condition and non-hematopoietic diseases, which are not systematically summarized. These emerging data suggest targeting hematopoiesis and bone marrow niche may provide novel therapeutic target to precisely control the progression of the diseases.

Keywords

hematopoiesis / bone marrow niche / hematopoietic stem and progenitor cell / inflammation

Cite this article

Download citation ▾
Yu-xiang Wang, Zhao-hua Deng, Yu-yan Li, Ke Bai, Jinjin Ma, Yang Liu, Qi Chen. Function of hematopoiesis and bone marrow niche in inflammation and non-hematopoietic diseases. Life Medicine, 2025, 4(3): lnaf015 DOI:10.1093/lifemedi/lnaf015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dzierzak E , Bigas A . Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 2018; 22: 639- 51.

[2]

Liggett LA , Sankaran VG . Unraveling hematopoiesis through the lens of genomics. Cell 2020; 182: 1384- 400.

[3]

Zhang Y , Liu F . The evolving views of hematopoiesis: from embryo to adulthood and from in vivo to in vitro. J Genet Genomics 2024; 51: 3- 15.

[4]

Kandarakov O , Belyavsky A , Semenova E . Bone marrow niches of hematopoietic stem and progenitor cells. Int J Mol Sci 2022; 23: 4462.

[5]

Orkin SH , Zon LI . Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008; 132: 631- 44.

[6]

Görgens A , Radtke S , Möllmann M , et al. Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. Cell Rep 2013; 3: 1539- 52.

[7]

Benveniste P , Frelin C , Janmohamed S , et al. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 2010; 6: 48- 58.

[8]

Yang L , Bryder D , Adolfsson J , et al. Identification of Lin-Sca1+kit+CD34 +Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 2005; 105: 2717- 23.

[9]

Pietras EM , Reynaud D , Kang YA , et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 2015; 17: 35- 46.

[10]

Laurenti E , Göttgens B . From haematopoietic stem cells to complex differentiation landscapes. Nature 2018; 553: 418- 26.

[11]

Velten L , Haas SF , Raffel S , et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 2017; 19: 271- 81.

[12]

Nestorowa S , Hamey FK , Pijuan Sala B , et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 2016; 128: e20- 31.

[13]

Lauridsen FKB , Jensen TL , Rapin N , et al. Differences in cell cycle status underlie transcriptional heterogeneity in the HSC compartment. Cell Rep 2018; 24: 766- 80.

[14]

Pinho S , Frenette PS . Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 2019; 20: 303- 20.

[15]

Stone AP , Nascimento TF , Barrachina MN . The bone marrow niche from the inside out: how megakaryocytes are shaped by and shape hematopoiesis. Blood 2022; 139: 483- 91.

[16]

Florencio-Silva R , Sasso GRDS , Sasso-Cerri E , et al. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015; 2015: 421746.

[17]

Herisson F , Frodermann V , Courties G , et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat Neurosci 2018; 21: 1209- 17.

[18]

Dolgalev I , Tikhonova AN . Connecting the dots: resolving the bone marrow niche heterogeneity. Front Cell Dev Biol 2021; 9: 1- 11.

[19]

Bandyopadhyay S , Duffy M , Ahn KJ , et al. Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Blood 2023; 142: 4072- 4072.

[20]

Zheng Z , He H , Tang XT , et al. Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis. Cell Stem Cell 2022; 29: 1562- 79.e7.

[21]

Pittenger MF , Mackay AM , Beck SC , et al. Multilineage potential of adult human mesenchymal stem cells. Science (1979) 1999; 284: 143- 7.

[22]

Kunisaki Y , Bruns I , Scheiermann C , et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2013; 502: 637- 43.

[23]

Greenbaum A , Hsu YMS , Day RB , et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013; 495: 227- 30.

[24]

Sugiyama T , Kohara H , Noda M , et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977- 88.

[25]

Zhou BO , Yue R , Murphy MM , et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 2014; 15: 154- 68.

[26]

Méndez-Ferrer S , Michurina TV , Ferraro F , et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829- 34.

[27]

Sharma M , Ross C , Srivastava S . Ally to adversary: mesenchymal stem cells and their transformation in leukaemia. Cancer Cell Int 2019; 19: 139.

[28]

Ding L , Saunders TL , Enikolopov G , et al. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012; 481: 457- 62.

[29]

Asada N , Kunisaki Y , Pierce H , et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 2017; 19: 214- 23.

[30]

Yue R , Zhou BO , Shimada IS , et al. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 2016; 18: 782- 96.

[31]

Hoggatt J , Singh P , Tate TA , et al. Rapid mobilization reveals a highly engraftable hematopoietic stem cell. Cell 2018; 172: 191- 204.e10.

[32]

Himburg HA , Termini CM , Schlussel L , et al. Distinct bone marrow sources of pleiotrophin control hematopoietic stem cell maintenance and regeneration. Cell Stem Cell 2018; 23: 370- 81.e5.

[33]

Zhou BO , Ding L , Morrison SJ . Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. Elife 2015; 4: p.e05521.

[34]

Baryawno N , Przybylski D , Kowalczyk MS , et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 2019; 177: 1915- 32.e16.

[35]

Liu Y , Chen Q , Jeong HW , et al. A specialized bone marrow microenvironment for fetal haematopoiesis. Nat Commun 2022; 13: 1327.

[36]

Itkin T , Gur-Cohen S , Spencer JA , et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 2016; 538: 274- 274.

[37]

Kusumbe AP , Ramasamy SK , Adams RH . Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 2014; 507: 323- 8.

[38]

Acar M , Kocherlakota KS , Murphy MM , et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 2015; 526: 126- 30.

[39]

Ding L , Morrison SJ . Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 2013; 495: 231- 5.

[40]

Xu Y , Murphy AJ , Fleetwood AJ . Hematopoietic progenitors and the bone marrow niche shape the inflammatory response and contribute to chronic disease. Int J Mol Sci 2022; 23: 2234.

[41]

Winkler IG , Barbier V , Nowlan B , et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 2012; 18: 1651- 7.

[42]

Mitroulis I , Chen LS , Singh RP , et al. Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche. J Clin Investig 2017; 127: 3624- 39.

[43]

Gao X , Zhang D , Xu C , et al. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 2021; 589: 591- 6.

[44]

Kusumbe AP , Ramasamy SK , Itkin T , et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 2016; 532: 380- 4.

[45]

Poulos MG , Guo P , Kofler NM , et al. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep 2013; 4: 1022- 34.

[46]

Hooper AT , Butler JM , Nolan DJ , et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 2009; 4: 263- 74.

[47]

Ramasamy SK . Structure and functions of blood vessels and vascular niches in bone. Stem Cells Int 2017; 2017: 1- 10.

[48]

Kobayashi H , Butler JM , O'Donnell R , et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 2010; 12: 1046- 56.

[49]

Roisman A , Adelman ER , Weich N , et al. A FLI1-KLF6 axis regulates aging in human hematopoietic stem and progenitor cells and normalization of KLF6 levels in aged cells leads to their rejuvenation. Blood 2021; 138: 19- 19.

[50]

Xie Y , Yin T , Wiegraebe W , et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 2009; 457: 97- 101.

[51]

Visnjic D , Kalajzic Z , Rowe DW , et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 2004; 103: 3258- 64.

[52]

Wu JY , Purton LE , Rodda SJ , et al. Osteoblastic regulation of B lymphopoiesis is mediated by G sα-dependent signaling pathways. Proc Natl Acad Sci USA 2008; 105: 16976- 81.

[53]

Yu VWC , Saez B , Cook C , et al. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J Exp Med 2015; 212: 759- 74.

[54]

Zhu J , Garrett R , Jung Y , et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 2007; 109: 3706- 12.

[55]

Ellis SL , Grassinger J , Jones A , et al. The relationship between bone, hemopoietic stem cells,and vasculature. Blood 2011; 118: 1516- 24.

[56]

Ramasamy SK , Kusumbe AP , Wang L , et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 2014; 507: 376- 80.

[57]

Sacchetti B , Funari A , Michienzi S , et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007; 131: 324- 36.

[58]

Chan CKF , Chen CC , Luppen CA , et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 2009; 457: 490- 4.

[59]

Adams GB , Chabner KT , Alley IR , et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 2006; 439: 599- 603.

[60]

Naveiras O , Nardi V , Wenzel PL , et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 2009; 460: 259- 63.

[61]

Golan K , Singh AK , Kollet O , et al. Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. Blood 2020; 136: 2607- 19.

[62]

Asada N , Katayama Y , Sato M , et al. Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells. Cell Stem Cell 2013; 12: 737- 47.

[63]

Sohn HW , Krueger PD , Davis RS , et al. FcRL4 acts as an adaptive to innate molecular switch dampening BCR signaling and enhancing TLR signaling. Blood 2011; 118: 6332- 41.

[64]

Fong GH . Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 2008; 11: 121- 40.

[65]

Yang D , de Haan G . Inflammation and aging of hematopoietic stem cells in their niche. Cells 2021; 10: 1849- 13.

[66]

Chavakis T , Mitroulis I , Hajishengallis G . Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat Immunol 2019; 20: 802- 11.

[67]

Pietras EM . Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood 2017; 130: 1693- 8.

[68]

Boettcher S , Manz MG . Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol 2017; 38: 345- 57.

[69]

Demel UM , Lutz R , Sujer S , et al. A complex proinflammatory cascade mediates the activation of HSCs upon LPS exposure in vivo. Blood Adv 2022; 6: 3513- 28.

[70]

Sato T , Onai N , Yoshihara H , et al. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type i interferondependent exhaustion. Nat Med 2009; 15: 696- 700.

[71]

Shao L , Elujoba-Bridenstine A , Zink KE , et al. The neurotransmitter receptor Gabbr1 regulates proliferation and function of hematopoietic stem and progenitor cells. Blood 2021; 137: 775- 87.

[72]

Renders S , Svendsen AF , Panten J , et al. Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1. Nat Commun 2021; 12: 608.

[73]

Mehlen P , Furne C . Netrin-1: When a neuronal guidance cue turns out to be a regulator of tumorigenesis. Cell Mol Life Sci 2005; 62: 2599- 616.

[74]

Gao X , Murphy MM , Peyer JG , et al. Leptin receptor+ cells promote bone marrow innervation and regeneration by synthesizing nerve growth factor. Nat Cell Biol 2023; 25: 1746- 57.

[75]

Justesen J , Stenderup K , Ebbesen EN , et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2001; 2: 165- 71.

[76]

Kaplan JL , Marshall MA , McSkimming CC , et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab 2015; 4: 779- 94.

[77]

Ambrosi TH , Scialdone A , Graja A , et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 2017; 20: 771- 84.e6.

[78]

Mattiucci D , Maurizi G , Izzi V , et al. Bone marrow adipocytes support hematopoietic stem cell survival. J Cell Physiol 2018; 233: 1500- 11.

[79]

Zhou BO , Yu H , Yue R , et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol 2017; 19: 891- 903.

[80]

Negahdaripour M , Owji H , Eskandari S , et al. Small extracellular vesicles (sEVs): discovery, functions, applications, detection methods and various engineered forms. Expert Opin Biol Ther 2021; 21: 371- 94.

[81]

Huang D , Sun G , Hao X , et al. ANGPTL2-containing small extracellular vesicles from vascular endothelial cells accelerate leukemia progression. J Clin Investig 2021; 131: e138986.

[82]

Huan J , Hornick NI , Goloviznina NA , et al. Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes. Leukemia 2015; 29: 2285- 95.

[83]

Zhang B , Nguyen LXT , Li L , et al. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med 2018; 24: 450- 62.

[84]

Yamaguchi T , Kawamoto E , Gaowa A , et al. Remodeling of bone marrow niches and roles of exosomes in Leukemia. Int J Mol Sci 2021; 22: 1881.

[85]

Kumar B , Garcia M , Weng L , et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia 2018; 32: 575- 87.

[86]

Liang M , Yin X , Zhang S , et al. Osteoclast-derived small extracellular vesicles induce osteogenic differentiation via inhibiting ARHGAP1. Mol Ther Nucleic Acids 2021; 23: 1191- 203.

[87]

Boyiadzis M , Whiteside TL . The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia 2017; 31: 1259- 68.

[88]

Malengier-Devlies B , Metzemaekers M , Wouters C , et al. Neutrophil homeostasis and emergency granulopoiesis: the example of systemic juvenile idiopathic arthritis. Front Immunol 2021; 12: 766620.

[89]

Nagai Y , Garrett KP , Ohta S , et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24: 801- 12.

[90]

Pietras EM , Warr MR , Passegué E . Cell cycle regulation in hematopoietic stem cells. J Cell Biol 2011; 195: 709- 20.

[91]

Essers MAG , Offner S , Blanco-Bose WE , et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature 2009; 458: 904- 8.

[92]

Piekarska K , Urban-Wójciuk Z , Kurkowiak M , et al. Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity. Nat Commun 2022; 13: 856.

[93]

Schürch CM , Riether C , Ochsenbein AF . Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell 2014; 14: 460- 72.

[94]

Ao T , Kikuta J , Sudo T , et al. Local sympathetic neurons promote neutrophil egress from the bone marrow at the onset of acute inflammation. Int Immunol 2021; 32: 727- 36.

[95]

Prendergast AM , Kuck A , van Essen M , et al. Ifnα mediated remodeling of the bone marrow stem cell vascular niche. Blood 2016; 128: 2667- 2667.

[96]

Pietras EM , Mirantes-Barbeito C , Fong S , et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol 2016; 18: 607- 18.

[97]

Walter D , Lier A , Geiselhart A , et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 2015; 520: 549- 52.

[98]

Ramalingam P , Poulos MG , Lazzari E , et al. Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF. Nat Commun 2020; 11: 666.

[99]

Chen J , Hendriks M , Chatzis A , et al. Bone vasculature and bone marrow vascular niches in health and disease. J Bone Miner Res 2020; 35: 2103- 20.

[100]

Tang D , Kang R , Coyne CB , et al. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 2012; 249: 158- 75.

[101]

Essers MAG . Inflammation mediated bone marrow remodeling. Blood 2019; 134: SCI- 2.

[102]

Hirata Y , Egea L , Dann SM , et al. GM-CSF-facilitated dendritic cell recruitment and survival govern the intestinal mucosal response to a mouse enteric bacterial pathogen. Cell Host Microbe 2010; 7: 151- 63.

[103]

Hoyer FF , Zhang X , Coppin E , et al. Bone marrow endothelial cells regulate myelopoiesis in diabetes mellitus. Circulation 2020; 142: 244- 58.

[104]

Fernandez L , Rodriguez S , Huang H , et al. Tumor necrosis factor-α and endothelial cells modulate Notch signaling in the bone marrow microenvironment during inflammation. Exp Hematol 2008; 36: 545- 58.e1.

[105]

Rankin EB , Giaccia AJ . Hypoxic control of metastasis. Science 2016; 352: 175- 80.

[106]

Hou Y , Qin H , Jiang N , et al. G-CSF partially mediates bone loss induced by Staphylococcus aureus infection in mice. Clin Sci 2019; 133: 1297- 308.

[107]

Winkler IG , Sims NA , Pettit AR , et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010; 116: 4815- 28.

[108]

Chow A , Lucas D , Hidalgo A , et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 2011; 208: 261- 71.

[109]

Viswanathan K , Dhabhar FS . Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation. Proc Natl Acad Sci U S A 2005; 102: 5808- 13.

[110]

Scheiermann C , Kunisaki Y , Lucas D , et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 2012; 37: 290- 301.

[111]

Saeed RW , Varma S , Peng-Nemeroff T , et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med 2005; 201: 1113- 23.

[112]

Goehler LE , Gaykema RPA , Hansen MK , Anderson K , Maier SF , Watkins LR . Vagal immune-to-brain communication: a visceral chemosensory pathway. In: Autonomic Neuroscience: Basic and Clinical, 2000.

[113]

Yu M , Ochani M , Amella CA , et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421: 384- 8.

[114]

Courties G , Herisson F , Sager HB , et al. Ischemic stroke activates hematopoietic bone marrow stem cells. Circ Res 2014; 116: 407- 17.

[115]

Boroumand P , Klip A . Bone marrow adipose cells-cellular interactions and changes with obesity. J Cell Sci 2020; 133: jcs238394.

[116]

Poloni A , Maurizi G , Serrani F , et al. Molecular and functional characterization of human bone marrow adipocytes. Exp Hematol 2013; 41: 558- 66.e2.

[117]

Manz MG , Boettcher S . Emergency granulopoiesis. Nat Rev Immunol 2014; 14: 302- 14.

[118]

Kaschutnig P , Bogeska R , Walter D , et al. The Fanconi anemia pathway is required for efficient repair of stress-induced DNA damage in haematopoietic stem cells. Cell Cycle 2015; 14: 2734- 42.

[119]

Zhao JL , Ma C , O'Connell RM , et al. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 2014; 14: 445- 59.

[120]

Takizawa H , Regoes RR , Boddupalli CS , et al. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med 2011; 208: 273- 84.

[121]

Liu A , Wang Y , Ding Y , et al. Cutting edge: hematopoietic stem cell expansion and common lymphoid progenitor depletion require hematopoietic-derived, cell-autonomous TLR4 in a model of chronic endotoxin. J Immunol 2015; 195: 2524- 8.

[122]

Esplin BL , Shimazu T , Welner RS , et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells.J Immunol 2011; 186: 5367- 75.

[123]

Hirai H , Zhang P , Dayaram T , et al. C/EBPβ is required for "emergency" granulopoiesis. Nat Immunol 2006; 7: 732- 9.

[124]

Hérault A , Binnewies M , Leong S , et al. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature 2017; 544: 53- 8.

[125]

Hibbs ML , Quilici C , Kountouri N , et al. Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis. J Immunol 2007; 178: 6435- 43.

[126]

Wilson A , Laurenti E , Oser G , et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 138: 209.

[127]

Christopher MJ , Rao M , Liu F , et al. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 2011; 208: 251- 60.

[128]

Hamilton JA . Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 2008; 8: 533- 44.

[129]

Takizawa H , Boettcher S , Manz MG . Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 2012; 119: 2991- 3002.

[130]

Capitano ML . Toll-like receptor signaling in hematopoietic stem and progenitor cells. Curr Opin Hematol 2019; 26: 207- 13.

[131]

Burberry A , Zeng MY , Ding L , et al. Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and toll-like receptor signaling. Cell Host Microbe 2014; 15: 779- 91.

[132]

Ratajczak MZ , Adamiak M , Plonka M , et al. Mobilization of hematopoietic stem cells as a result of innate immunity-mediated sterile inflammation in the bone marrow microenvironment-The involvement of extracellular nucleotides and purinergic signaling. Leukemia 2018; 32: 1116- 23.

[133]

Brun P , Giron MC , Qesari M , et al. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 2013; 145: 1323- 33.

[134]

Li S , Yao JC , Oetjen KA , et al. IL-1β expression in bone marrow dendritic cells is induced by TLR2 agonists and regulates HSC function. Blood 2022; 140: 1607- 20.

[135]

MacLean AL , Smith MA , Liepe J , et al. Single cell phenotyping reveals heterogeneity among hematopoietic stem cells following infection. Stem Cells 2017; 35: 2292- 304.

[136]

Tay J , Levesque JP , Winkler IG . Cellular players of hematopoietic stem cell mobilization in the bone marrow niche. Int J Hematol 2017; 105: 129- 40.

[137]

Spencer JA , Ferraro F , Roussakis E , et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 2014; 508: 269- 73.

[138]

Wang J , Erlacher M , Fernandez-Orth J . The role of inflammation in hematopoiesis and bone marrow failure: What can we learn from mouse models? Front Immunol 2022; 13: 951937.

[139]

Kak G , Raza M , Tiwari BK . Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomolecular Concepts 2018; 9: 64- 79.

[140]

Goedhart M , Cornelissen AS , Kuijk C , et al. Interferon-gamma impairs maintenance and alters hematopoietic support of bone marrow mesenchymal stromal cells. Stem Cells Dev 2018; 27: 579- 89.

[141]

Baldridge MT , King KY , Boles NC , et al. Quiescent haematopoietic stem cells are activated by IFN-α in response to chronic infection. Nature 2010; 465: 793- 7.

[142]

Pietras EM , Lakshminarasimhan R , Techner JM , et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med 2014; 211: 245- 62.

[143]

Sun L , Wu J , Du F , et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science (1979) 2013; 339: 786- 91.

[144]

Haas S , Hansson J , Klimmeck D , et al. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 2015; 17: 422- 34.

[145]

De Bruin AM , Demirel O , Hooibrink B , et al. Interferon-γ impairs proliferation of hematopoietic stem cells in mice.Blood 2013; 121: 3578- 85.

[146]

Peters JM , Irvine EB , Rosenberg JM , et al. Protective intravenous BCG vaccination induces enhanced immune signaling in the airways. bioRxiv 2023.

[147]

Chavez JS , Rabe JL , Loeffler D , et al. PU.1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress. J Exp Med 2021; 218: e20201169.

[148]

Rider P , Carmi Y , Guttman O , et al. IL-1α and IL-1β Recruit Different Myeloid Cells and Promote Different Stages of Sterile Inflammation. J Immunol 2011; 187: 4835- 43.

[149]

Moorlag SJCFM , Khan N , Novakovic B , et al. β-Glucan induces protective trained immunity against mycobacterium tuberculosis infection: a key role for IL-1. Cell Rep 2020; 31: 107634.

[150]

Kovtonyuk LV , Caiado F , Garcia-Martin S , et al. IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice. Blood 2022; 139: 44- 58.

[151]

Cho YK , Kim H , Bénard A , et al. Electrochemiluminescence in paired signal electrode (ECLipse) enables modular and scalable biosensing. Sci Adv 2022; 8: eabq4022.

[152]

Oon S , Monaghan K , Ng M , et al. A potential association between IL-3 and type I and III interferons in systemic lupus erythematosus. Clin Transl Immunol 2019; 8: e01097.

[153]

Weber GF , Chousterman BG , He S , et al. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science (1979) 2015; 347: 1260- 5.

[154]

Lim SE , Esain V , Kwan W , et al. HIF1α-induced PDGFRβ signaling promotes developmental HSC production via IL-6 activation. Exp Hematol 2017; 46: 83- 95.e6.

[155]

Chiba Y , Mizoguchi I , Furusawa J , et al. Interleukin-27 exerts its antitumor effects by promoting differentiation of hematopoietic stem cells to M1 macrophages. Cancer Res 2018; 78: 182- 94.

[156]

He H , Xu P , Zhang X , et al. Aging-induced IL27Ra signaling impairs hematopoietic stem cells. Blood 2020; 136: 183- 98.

[157]

Yamashita M , Passegué E . TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell 2019; 25: 357- 72.e7.

[158]

Nutt SL . Directing the conductor: TNF regulation of HSCs. Blood 2019; 133: 771- 3.

[159]

Quin C , DeJong E , McNaughton AJM , et al. Chronic TNF in the aging microenvironment exacerbates TET2- loss-of-function myeloid expansion. Blood 2023; 142: 938- 938.

[160]

Bowers E , Slaughter A , Frenette PS , et al. Granulocyte-derived TNFα promotes vascular and hematopoietic regeneration in the bone marrow. Nat Med 2018; 24: 95- 102.

[161]

Bentzon JF , Otsuka F , Virmani R , et al. Mechanisms of plaque formation and rupture. Circ Res 2014; 114: 1852- 66.

[162]

Prondzinsky R , Unverzagt S , Lemm H , et al. Interleukin-6, -7, -8 and -10 predict outcome in acute myocardial infarction complicated by cardiogenic shock. Clin Res Cardiol 2012; 101: 375- 84.

[163]

Bekkering S , van den Munckhof I , Nielen T , et al. Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo. Atherosclerosis 2016; 254: 228- 36.

[164]

Noz MP , Hartman YAW , Hopman MTE , et al. Sixteen-week physical activity intervention in subjects with increased cardiometabolic risk shifts innate immune function towards a less proinflammatory state. J Am Heart Assoc 2019; 8: e013764.

[165]

Sellak H , Franzini E , Hakim J , et al. Reactive oxygen species rapidly increase endothelial ICAM-1 ability to bind neutrophils without detectable upregulation. Blood 1994; 83: 2669- 77.

[166]

Shingu M , Nonaka S , Nishimukai H , et al. Activation of complement in normal serum by hydrogen peroxide and hydrogen peroxiderelated oxygen radicals produced by activated neutrophils. Clin Exp Immunol 1992; 90: 72- 8.

[167]

Kurrelmeyer KM , Michael LH , Baumgarten G , et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci U S A 2000; 97: 5456- 61.

[168]

Mazzaferro S , Cianciolo G , De Pascalis A , et al. Bone, inflammation and the bone marrow niche in chronic kidney disease: What do we know? Nephrol dial transplant 2018; 33: 2092- 100.

[169]

Fishbane S , Spinowitz B . Update on anemia in ESRD and earlier stages of CKD: core curriculum 2018. Am J Kidney Dis 2018; 71: 423- 35.

[170]

Lacombe C , Da Silva JL , Bruneval P , et al. Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J Clin Investig 1988; 81: 620- 3.

[171]

Lanser L , Fuchs D , Kurz K , et al. Physiology and inflammation driven pathophysiology of iron homeostasisαmechanistic insights into anemia of inflammation and its treatment. Nutrients 2021; 13: 3732.

[172]

Batchelor EK , Kapitsinou P , Pergola PE , et al. Iron deficiency in chronic kidney disease: updates on pathophysiology, diagnosis, and treatment. J Am Soc Nephrol 2020; 31: 456- 68.

[173]

Cappellini MD , Musallam KM , Taher AT . Iron deficiency anaemia revisited. J Intern Med 2020; 287: 153- 70.

[174]

Bazeley JW , Wish JB . Recent and emerging therapies for iron deficiency in anemia of CKD: a review. Am J Kidney Dis 2022; 79: 868- 76.

[175]

Stevens PE , Levin A ; for the Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members*. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 2013; 158: 825- 30.

[176]

Fang Y , Ginsberg C , Sugatani T , et al. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int 2014; 85: 142- 50.

[177]

Isakova T , Cai X , Lee J , et al. Longitudinal evolution of markers of mineral metabolism in patients with CKD: The Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 2020; 75: 235- 44.

[178]

Lewin E , Ladefoged J , Brandi L , et al. Parathyroid hormone dependent T cell proliferation in uremic rats. Kidney Int 1993; 44: 379- 84.

[179]

Malluche HH , Ritz E , Lange HP , et al. Bone histology in incipient and advanced renal failure. Kidney Int 1976; 9: 355- 62.

[180]

Viaene L , Behets GJ , Heye S , et al. Inflammation and the bone-vascular axis in end-stage renal disease. Osteoporos Int 2016; 27: 489- 97.

[181]

Hoffman CM , Calvi LM . Minireview: complexity of hematopoietic stem cell regulation in the bone marrow microenvironment. Mol Endocrinol 2014; 28: 1592- 601.

[182]

Cianciolo G , Capelli I , Cappuccilli M , et al. Is chronic kidney disease-mineral and bone disorder associated with the presence of endothelial progenitor cells with a calcifying phenotype? Clin Kidney J 2017; 10: 389- 96.

[183]

Zhou S , Glowacki J . Chronic kidney disease and vitamin D metabolism in human bone marrow-derived MSCs. Ann N Y Acad Sci 2017; 1402: 43- 55.

[184]

Mitroulis I , Hajishengallis G , Chavakis T . Bone marrow inflammatory memory in cardiometabolic disease and inflammatory comorbidities. Cardiovasc Res 2023; 119: 2801- 12.

[185]

Kaufmann E , Sanz J , Dunn JL , et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 2018; 172: 176- 90.e19.

[186]

Miller RG , Mahajan HD , Costacou T , et al. A contemporary estimate of total mortality and cardiovascular disease risk in young adults with type 1 diabetes: the pittsburgh epidemiology of diabetes complications study. Diabetes Care 2016; 39: 2296- 303.

[187]

Barrett TJ , Murphy AJ , Goldberg IJ , et al. Diabetes-mediated myelopoiesis and the relationship to cardiovascular risk. Ann N Y Acad Sci 2017; 1402: 31- 42.

[188]

Spinetti G , Cordella D , Fortunato O , et al. Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: implication of the microRNA-155/FOXO3a signaling pathway. Circ Res 2013; 112: 510- 22.

[189]

Kim JM , Lee WS , Kim J . Therapeutic strategy for atherosclerosis based on bone-vascular axis hypothesis. Pharmacol Ther 2020; 206: 107436.

[190]

Orlandi A , Chavakis E , Seeger F , et al. Long-term diabetes impairs repopulation of hematopoietic progenitor cells and dysregulates the cytokine expression in the bone marrow microenvironment in mice. Basic Res Cardiol 2010; 105: 703- 12.

[191]

Sebo ZL , Rendina-Ruedy E , Ables GP , et al. Bone marrow adiposity: basic and clinical implications. Endocr Rev 2019; 40: 1187- 206.

[192]

Pisetsky DS . Pathogenesis of autoimmune disease. Nat Rev Nephrol 2023; 19: 509- 24.

[193]

Armstrong C , Davies RG , Gonzalez-Quevedo C , et al. Myeloperoxidase attenuates pathogen clearance during plasmodium yoelii nonlethal infection. Infect Immun 2016; 85: e00475- 16.

[194]

Marcus R . What Is Multiple Sclerosis? JAMA 2022; 328: 2078.

[195]

Lublin FD , Reingold SC , Cohen JA , et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014; 83: 278- 86.

[196]

Shi K , Li H , Chang T , et al. Bone marrow hematopoiesis drives multiple sclerosis progression. Cell 2022; 185: 2234- 47.e17.

[197]

Passweg JR , Baldomero H , Bader P , et al. Is the use of unrelated donor transplantation leveling off in Europe? The 2016 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant 2018; 53: 1139- 48.

[198]

Massey JC , Sutton IJ , Ma DDF , et al. Regenerating immunotolerance in multiple sclerosis with autologous hematopoietic stem cell transplant. Front Immunol 2018; 9: 410.

[199]

Sousa A de PA , Malmegrim KCR , Panepucci RA , et al. Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis. Clin Sci 2015; 128: 111- 20.

[200]

Abrahamsson SV , Angelini DF , Dubinsky AN , et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 2013; 136: 2888- 903.

[201]

Burman J , Fransson M , Tötterman TH , et al. T-cell responses after haematopoietic stem cell transplantation for aggressive relapsingremitting multiple sclerosis. Immunology 2013; 140: 211- 9.

[202]

Muraro PA , Douek DC , Packer A , et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med 2005; 201: 805- 16.

[203]

Moccia M , Palladino R , Lanzillo R , et al. Healthcare Costs for treating relapsing multiple sclerosis and the risk of progression: a retrospective Italian cohort study from 2001 to 2015. PLoS One 2017; 12: e0169489.

[204]

Ameer MA , Chaudhry H , Mushtaq J , et al. An overview of Systemic Lupus Erythematosus (SLE) pathogenesis, classification, and management. Cureus 2022; 14: e30330.

[205]

Michel M , Chanet V , Dechartres A , et al. The spectrum of Evans syndrome in adults: new insight into the disease based on the analysis of 68 cases. Blood 2009; 114: 3167- 72.

[206]

Kokkinopoulos I , Banos A , Grigoriou M , et al. Patrolling human SLE haematopoietic progenitors demonstrate enhanced extramedullary colonisation; implications for peripheral tissue injury. Sci Rep 2021; 11: 15759.

[207]

Grigoriou M , Banos A , Filia A , et al. Transcriptome reprogramming and myeloid skewing in haematopoietic stem and progenitor cells in systemic lupus erythematosus. Ann Rheum Dis 2019; 79: 242- 53.

[208]

Pullarkat V , Bass RD , Gong JZ , et al. Primary autoimmune myelofibrosis: definition of a distinct clinicopathologic syndrome. Am J Hematol 2003; 72: 8- 12.

[209]

Bugatti S , Manzo A , Caporali R , et al. Inflammatory lesions in the bone marrow of rheumatoid arthritis patients: a morphological perspective. Arthritis Res Ther 2012; 14: 229.

[210]

Hitchon CA . The synovium in rheumatoid arthritis. Open Rheumatol J 2012; 5: 107- 14.

[211]

Tomita T , Kashiwagi N , Shimaoka Y , et al. Phenotypic characteristics of bone marrow cells in patients with rheumatoid arthritis. J Rheumatol 1994; 21: 1608- 14.

[212]

Tomita T , Shimaoka Y , Kashiwagi N , et al. Enhanced expression of CD14 antigen on myeloid lineage cells derived from the bone marrow of patients with severe rheumatoid arthritis. J Rheumatol 1997; 24: 465- 9.

[213]

Hirohata S , Yanagida T , Itoh K , et al. Accelerated generation of CD14+ monocyte-lineage cells from the bone marrow of rheumatoid arthritis patients. Arthritis Rheum 1996; 39: 836- 43.

[214]

Pala O , Diaz A , Blomberg BB , et al. B lymphocytes in rheumatoid arthritis and the effects of anti-TNF-α agents on B lymphocytes: a review of the literature. Clin Ther 2018; 40: 1034- 45.

[215]

Kuca-Warnawin E , Burakowski T , Kurowska W , et al. Elevated number of recently activated T cells in bone marrow of patients with rheumatoid arthritis: a role for interleukin 15? Ann Rheum Dis 2011; 70: 227- 33.

[216]

Doita M , Maeda S , Kawai K , et al. Analysis of lymphocyte subsets of bone marrow in patients with rheumatoid arthritis by two colour immunofluorescence and flow cytometry. Ann Rheum Dis 1990; 49: 168- 71.

[217]

Muthu S , Jeyaraman M , Ranjan R , et al. Remission is not maintained over 2 years with hematopoietic stem cell transplantation for rheumatoid arthritis: a systematic review with meta-analysis. World J Biol Chem 2021; 12: 0- 0.

RIGHTS & PERMISSIONS

The Author(s). Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1960KB)

431

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/