Unraveling the metabolic heterogeneity and commonality in senescent cells using systems modeling

Gong-Hua Li , Yu-Hong Li , Qin Yu , Qing-Qing Zhou , Run-Feng Zhang , Chong-Jun Weng , Ming-Xia Ge , Qing-Peng Kong

Life Medicine ›› 2025, Vol. 4 ›› Issue (2) : lnaf003

PDF (7910KB)
Life Medicine ›› 2025, Vol. 4 ›› Issue (2) : lnaf003 DOI: 10.1093/lifemedi/lnaf003
Article

Unraveling the metabolic heterogeneity and commonality in senescent cells using systems modeling

Author information +
History +
PDF (7910KB)

Abstract

Cellular senescence is a key contributor to aging and aging-related diseases, but its metabolic profiles are not well understood. Here, we performed a systematic analysis of the metabolic features of four types of cellular senescence (replication, irradiation, reactive oxygen species [ROS], and oncogene) in 12 cell lines using genome-wide metabolic modeling and meta-analysis. We discovered that replicative and ROS-induced senescence share a common metabolic signature, marked by decreased lipid metabolism and downregulated mevalonate pathway, while irradiation and oncogene-induced senescence exhibit more heterogeneity and divergence. Our genome-wide knockout simulations showed that enhancing the mevalonate pathway, by administrating mevalonate for instance, could reverse the metabolic alterations associated with senescence and human tissue aging, suggesting a potential anti-aging or lifespan-extending effect. Indeed, the experiment in Caenorhabditis elegans showed that administrating mevalonate significantly increased the lifespan. Our study provides a new insight into the metabolic landscape of cell senescence and identifies potential targets for anti-aging interventions.

Keywords

cellular senescence / metabolic profile / metabolic modeling / meta-analysis

Cite this article

Download citation ▾
Gong-Hua Li, Yu-Hong Li, Qin Yu, Qing-Qing Zhou, Run-Feng Zhang, Chong-Jun Weng, Ming-Xia Ge, Qing-Peng Kong. Unraveling the metabolic heterogeneity and commonality in senescent cells using systems modeling. Life Medicine, 2025, 4(2): lnaf003 DOI:10.1093/lifemedi/lnaf003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang W , Hickson LJ , Eirin A , et al. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18: 611- 27.

[2]

Muñoz-Espín D , Cañamero M , Maraver A , et al. Programmed cell senescence during mammalian embryonic development. Cell 2013; 155: 1104- 18.

[3]

Jun J-I , Lau LF . The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 2010; 12: 676- 85.

[4]

Wang B , Demaria M . The quest to define and target cellular senescence in cancer. Cancer Res 2021; 81: 6087- 9.

[5]

Childs BG , Durik M , Baker DJ , et al. Cellular senescence in aging and age-related disease:from mechanisms to therapy. Nat Med 2015; 21: 1424- 35.

[6]

Collado M , Blasco MA , Serrano M . Cellular senescence in cancer and aging. Cell 2007; 130: 223- 33.

[7]

Evangelou K , Vasileiou PVS , Papaspyropoulos A , et al. Cellular senescence and cardiovascular diseases: moving to the "heart" of the problem. Physiol Rev 2023; 103: 609- 47.

[8]

Khosla S , Farr JN , Tchkonia T , et al. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 2020; 16: 263- 75.

[9]

Saez-Atienzar S , Masliah E . Cellular senescence and Alzheimer disease: the egg and the chicken scenario. Nat Rev Neurosci 2020; 21: 433- 44.

[10]

Bloom SI , Islam MT , Lesniewski LA , et al. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol 2023; 20: 38- 51.

[11]

Gasek NS , Kuchel GA , Kirkland JL , et al. Strategies for targeting senescent cells in human disease. Nature Aging 2021; 1: 870- 9.

[12]

Xu M , Pirtskhalava T , Farr JN , et al. Senolytics improve physical function and increase lifespan in old age. Nat Med 2018; 24: 1246- 56.

[13]

Wiley CD , Campisi J . From ancient pathways to aging cells- connecting metabolism and cellular senescence. Cell Metab 2016; 23: 1013- 21.

[14]

Wiley CD , Campisi J . The metabolic roots of senescence: mechanisms and opportunities for intervention.Nat Metab 2021; 3: 1290- 301.

[15]

Miwa S , Kashyap S , Chini E , et al. Mitochondrial dysfunction in cell senescence and aging. J Clin Invest 2022; 132: e158447.

[16]

Wiley CD , Sharma R , Davis SS , et al. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab 2021; 33: 1124- 36.e5.

[17]

Di Micco R , Krizhanovsky V , Baker D , et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 2021; 22: 75- 95.

[18]

Munoz-Espin D , Serrano M . Cellular senescence:from physiology to pathology. Nat Rev Mol Cell Biol 2014; 15: 482- 96.

[19]

Zhu H , Blake S , Kusuma FK , et al. Oncogene-induced senescence:from biology to therapy. Mech Ageing Dev 2020; 187: 111229.

[20]

Nguyen HQ , To NH , Zadigue P , et al. Ionizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review. Crit Rev Oncol Hematol 2018; 129: 13- 26.

[21]

Chandrasekaran A , Idelchik M , Melendez JA . Redox control of senescence and age-related disease. Redox Biol 2017; 11: 91- 102.

[22]

Rhinn M , Ritschka B , Keyes WM . Cellular senescence in development, regeneration and disease. Development 2019; 146: dev151837.

[23]

Kumari R , Jat P . Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Develop Biol 2021; 9: 485.

[24]

Cohn RL , Gasek NS , Kuchel GA , et al. The heterogeneity of cellular senescence: insights at the single-cell level. Trends Cell Biol 2023; 33: 9- 17.

[25]

Li G-H , Dai S , Han F , et al. FastMM: an efficient toolbox for personalized constraint-based metabolic modeling. BMC Bioinf 2020; 21: 1- 7.

[26]

Li GH , Han F , Xiao F-H , et al. System-level metabolic modeling facilitates unveiling metabolic signature in exceptional longevity. Aging Cell 2022; 21: e13595.

[27]

Hakimi AA , Reznik E , Lee C-H , et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 2016; 29: 104- 16.

[28]

Hu M , Liu R , Chen X , et al. Metabolomics dysfunction in replicative senescence of periodontal ligament stem cells regulated by AMPK Signaling Pathway. Stem Cells Dev 2024; 33: 607- 15.

[29]

Tighanimine K , Nabuco Leva Ferreira Freitas JA , Nemazanyy I , et al. A homoeostatic switch causing glycerol-3-phosphate and phosphoethanolamine accumulation triggers senescence by rewiring lipid metabolism. Nat Metab 2024; 6: 323- 42.

[30]

Ge M-X , Yu Q , Li G-H , et al. Multiple time-series expression trajectories imply dynamic functional changes during cellular senescence. Comput Struct Biotechnol J 2022; 20: 4131- 7.

[31]

Chen Y , Gustafsson J , Yang J , et al. Single-cell omics analysis with genome-scale metabolic modeling. Curr Opin Biotechnol 2024; 86: 103078.

[32]

Chen Y , Gustafsson J , Tafur Rangel A , et al. Reconstruction, simulation and analysis of enzyme-constrained metabolic models using GECKO Toolbox 3.0. Nat Protocols 2024; 19: 629- 67.

[33]

Heinken A , Hertel J , Acharya G , et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat Biotechnol 2023; 41: 1320- 31.

[34]

Wang H , Robinson JL , Kocabas P , et al. Genome-scale metabolic network reconstruction of model animals as a platform for translational research. Proc Natl Acad Sci USA 2021; 118: e2102344118.

[35]

Wagner A , Wang C , Fessler J , et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 2021; 184: 4168- 85.e21.

[36]

Robinson JL , Kocabaş P , Wang H , et al. An atlas of human metabolism. Sci Signaling 2020; 13: eaaz1482.

[37]

Zhou Y , Zhou B , Pache L , et al. Metascape provides a biologistoriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10: 1523.

[38]

Korotkevich G , Sukhov V , Budin N , et al. Fast gene set enrichment analysis. BioRxiv 2016: 060012.

[39]

Reimand J , Isserlin R , Voisin V , et al. Pathway enrichment analysis and visualization of omics data using g: profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protocols 2019; 14: 482- 517.

[40]

Han Q , Li H , Jia M , et al. Age-related changes in metabolites in young donor livers and old recipient sera after liver transplantation from young to old rats. Aging Cell 2021; 20: e13425.

[41]

He P , Du G , Qin X , et al. Reduced energy metabolism contributing to aging of skeletal muscle by serum metabolomics and gut microbiota analysis. Life Sci 2023; 323: 121619.

[42]

Marthandan S , Baumgart M , Priebe S , et al. Conserved senescence associated genes and pathways in primary human fibroblasts detected by RNA-seq. PLoS One 2016; 11: e0154531.

[43]

Hernandez-Segura A , de Jong TV , Melov S , et al. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol 2017; 27: 2652- 60.e4.

[44]

Pole A , Dimri M , Dimri GP . Oxidative stress, cellular senescence and ageing. AIMS Mol Sci 2016; 3: 300- 24.

[45]

Jeong SG , Cho GW . Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells. Biochem Biophys Res Commun 2015; 460: 971- 6.

[46]

Zia A , Farkhondeh T , Pourbagher-Shahri AM , et al. The roles of mitochondrial dysfunction and reactive oxygen species in aging and senescence. Curr Mol Med 2022; 22: 37- 49.

[47]

Von Zglinicki T . Role of oxidative stress in telomere length regulation and replicative senescence. Ann N Y Acad Sci 2000; 908: 99- 110.

[48]

Olive PL , Banath JP , Durand RE . Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. 1990. Radiat Res 2012; 178: AV35- 42.

[49]

McBride WH , Schaue D . Radiation-induced tissue damage and response. J Pathol 2020; 250: 647- 55.

[50]

Buhaescu I , Izzedine H . Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem 2007; 40: 575- 84.

[51]

Tricarico PM , Crovella S , Celsi FJI . Mevalonate pathway blockade, mitochondrial dysfunction and autophagy: a possible link. Int J Mol Sci 2015; 16: 16067- 84.

[52]

Sugiyama T , Tsugawa Y , Tseng C-H , et al. Different time trends of caloric and fat intake between statin users and nonusers among US adults: gluttony in the time of statins? JAMA Int med 2014; 174: 1038- 45.

[53]

Singh P , Zhang Y , Sharma P , et al. Statins decrease leptin expression in human white adipocytes. Physiol Rep 2018; 6: e13566.

[54]

Balaz M , Becker AS , Balazova L , et al. Inhibition of mevalonate pathway prevents adipocyte browning in mice and men by affecting protein prenylation. Cell Metab 2019; 29: 901- 16.e8.

[55]

Zhang JL , Lv M , Yang C-F , et al. Mevalonate pathway and male reproductive aging. Mol Reprod Dev 2023; 90: 774- 81.

[56]

Guo J , Huang X , Dou L , et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7: 391.

[57]

Liu C , Zuo W , Yan G , et al. Granulosa cell mevalonate pathway abnormalities contribute to oocyte meiotic defects and aneuploidy. Nature Aging 2023; 3: 670- 87.

[58]

Samuelson AV , Carr CE , Ruvkun G . Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Develop 2007; 21: 2976- 94.

[59]

Tacutu R , Thornton D , Johnson E , et al. Human ageing genomic resources: new and updated databases. Nucleic Acids Res 2018; 46: D1083- 90.

[60]

Jain M , Nilsson R , Sharma S , et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012; 336: 1040- 4.

[61]

Nam H , Campodonico M , Bordbar A , et al. A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks. PLoS Comput Biol 2014; 10: e1003837.

[62]

Ritchie ME , Phipson B , Wu D , et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43: e47- e47.

[63]

Rozowsky J , Gao J , Borsari B , et al. The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models. Cell 2023; 186: 1493- 511.e40.

[64]

Robinson MD , McCarthy DJ , Smyth GK . edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139- 40.

[65]

Zhao Y , Li M-C , Konaté MM , et al. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J Transl Med 2021; 19: 1- 15.

[66]

Zhao S , Ye Z , Stanton R . Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA 2020; 26: 903- 9.

RIGHTS & PERMISSIONS

The Author(s). Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (7910KB)

Supplementary files

Supplementary Information

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/