
Intestinal stem cells in intestinal homeostasis and colorectal tumorigenesis
Gaoli Shi, Yang Li, Haihong Shen, Qiankun He, Pingping Zhu
Life Medicine ›› 2024, Vol. 3 ›› Issue (5) : lnae042.
Intestinal stem cells in intestinal homeostasis and colorectal tumorigenesis
Colorectal cancer (CRC), one of the most common tumors in the world, is generally proposed to be generated from intestinal stem cells (ISCs). Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)-positive ISCs are located at the bottom of the crypt and harbor self-renewal and differentiation capacities, serving as the resource of all intestinal epithelial cells and CRC cells as well. Here we review recent progress in ISCs both in non-tumoral and tumoral contexts. We summarize the molecular mechanisms of ISC self-renewal, differentiation, and plasticity for intestinal homeostasis and regeneration. We also discuss the function of ISCs in colorectal tumorigenesis as cancer stem cells and summarize fate dynamic, competition, niche regulation, and remote environmental regulation of ISCs for CRC initiation and propagation.
intestinal stem cells / cancer stem cells / self-renewal / differentiation / niche
[1] |
Zhou J , Boutros M . Intestinal stem cells and their niches in homeostasis and disease. Cells Dev 2023; 175: 203862.
CrossRef
Google scholar
|
[2] |
Krndija D , El Marjou F , Guirao B , et al. Active cell migration is critical for steady-state epithelial turnover in the gut. Science 2019; 365: 705- 10.
CrossRef
Google scholar
|
[3] |
Barker N , van Es JH , Kuipers J , et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449: 1003- 7.
CrossRef
Google scholar
|
[4] |
Van der Flier LG , Haegebarth A , Stange DE , et al. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 2009; 137: 15- 7.
CrossRef
Google scholar
|
[5] |
van der Flier LG , van Gijn ME , Hatzis P , et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 2009; 136: 903- 12.
CrossRef
Google scholar
|
[6] |
Sangiorgi E , Capecchi MR . Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 2008; 40: 915- 20.
CrossRef
Google scholar
|
[7] |
Montgomery RK , Carlone DL , Richmond CA , et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci USA 2011; 108: 179- 84.
CrossRef
Google scholar
|
[8] |
Powell AE , Wang Y , Li YN , et al. The pan-ErbB negative regulator Lrig1 Is an intestinal stem cell marker that functions as a tumor suppressor. Cell 2012; 149: 146- 58.
CrossRef
Google scholar
|
[9] |
Buczacki SJA , Zecchini HI , Nicholson AM , et al. Intestinal labelretaining cells are secretory precursors expressing Lgr5. Nature 2013; 495: 65- 9.
CrossRef
Google scholar
|
[10] |
Malagola E , Vasciaveo A , Ochiai Y , et al. Isthmus progenitor cells contribute to homeostatic cellular turnover and support regeneration following intestinal injury. Cell 2024; 187: 3056- 71.e17.
CrossRef
Google scholar
|
[11] |
Capdevila C , Miller J , Cheng L , et al. Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+crypt base columnar cells. Cell 2024; 187: 3039- 55.e14.
CrossRef
Google scholar
|
[12] |
Vermeulen L , Snippert HJ . Stem cell dynamics in homeostasis and cancer of the intestine. Nat Rev Cancer 2014; 14: 468- 80.
CrossRef
Google scholar
|
[13] |
Beumer J , Clevers H . Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol 2021; 22: 39- 53.
CrossRef
Google scholar
|
[14] |
Lopez-Garcia C , Klein AM , Simons BD , et al. Intestinal stem cell replacement follows a pattern of neutral drift. Science 2010; 330: 822- 5.
CrossRef
Google scholar
|
[15] |
Ritsma L , Ellenbroek SIJ , Zomer A , et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 2014; 507: 362- 5.
CrossRef
Google scholar
|
[16] |
Sato T , van Es JH , Snippert HJ , et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011; 469: 415- 8.
CrossRef
Google scholar
|
[17] |
Kim TH , Escudero S , Shivdasani RA . Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci USA 2012; 109: 3932- 7.
CrossRef
Google scholar
|
[18] |
van Es JH , Wiebrands K , López-Iglesias C , et al. Enteroendocrine and tuft cells support Lgr5 stem cells on Paneth cell depletion. Proc Natl Acad Sci USA 2019; 116: 26599- 605.
CrossRef
Google scholar
|
[19] |
Sasaki N , Sachs N , Wiebrands K , et al. Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. Proc Natl Acad Sci U S A 2016; 113: E5399- 407.
CrossRef
Google scholar
|
[20] |
Shoshkes-Carmel M , Wang YJ , Wangensteen KJ , et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 2018; 557: 242- 6.
CrossRef
Google scholar
|
[21] |
Degirmenci B , Valenta T , Dimitrieva S , et al. GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. Nature 2018; 558: 449- 53.
CrossRef
Google scholar
|
[22] |
Wu N , Sun H , Zhao X , et al. MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche. Nature 2021; 592: 606- 10.
CrossRef
Google scholar
|
[23] |
Agudo J , Park ES , Rose SA , et al. Quiescent tissue stem cells evade immune surveillance. Immunity 2018; 48: 271- 85.e5.
CrossRef
Google scholar
|
[24] |
Zhu PP , Lu TK , Wu JY , et al. Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons. Cell Res 2022; 32: 555- 69.
CrossRef
Google scholar
|
[25] |
Baghdadi MB , Ayyaz A , Coquenlorge S , et al. Enteric glial cell heterogeneity regulates intestinal stem cell niches. Cell Stem Cell 2022; 29: 86- 100.e6.
CrossRef
Google scholar
|
[26] |
Progatzky F , Pachnis V . Enteric glia bring fresh WNT to the intestinal stem cell niche. Cell Stem Cell 2022; 29: 3- 4.
CrossRef
Google scholar
|
[27] |
Antanaviciute A , Kusumbe A , Simmons A . Lymphatic endothelia stakeout cryptic stem cells. Cell Stem Cell 2022; 29: 1292- 3.
CrossRef
Google scholar
|
[28] |
Goto N , Goto S , Imada S , et al. Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury. Cell Stem Cell 2022; 29: 1246- 61.e6.
CrossRef
Google scholar
|
[29] |
Palikuqi B , Rispal J , Reyes EA , et al. Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury. Cell Stem Cell 2022; 29: 1262- 72.e5.
CrossRef
Google scholar
|
[30] |
Niec RE , Chu TY , Schernthanner M , et al. Lymphatics act as a signaling hub to regulate intestinal stem cell activity. Cell Stem Cell 2022; 29: 1067- 82.e18.
CrossRef
Google scholar
|
[31] |
Deng M , Guerrero-Juarez CF , Sheng X , et al. Lepr+ mesenchymal cells sense diet to modulate intestinal stem/progenitor cells via leptin-Igf1 axis. Cell Res 2022; 32: 670- 86.
CrossRef
Google scholar
|
[32] |
Beyaz S , Mana MD , Roper J , et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 2016; 531: 53- 8.
CrossRef
Google scholar
|
[33] |
Biton M , Haber AL , Rogel N , et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 2018; 175: 1307- 20.e22.
CrossRef
Google scholar
|
[34] |
Duckworth CA . Identifying key regulators of the intestinal stem cell niche. Biochem Soc Trans 2021; 49: 2163- 76.
CrossRef
Google scholar
|
[35] |
Kim J , Koo BK , Knoblich JA . Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 2020; 21: 571- 84.
CrossRef
Google scholar
|
[36] |
Gehart H , Clevers H . Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol 2019; 16: 19- 34.
CrossRef
Google scholar
|
[37] |
Jensen J , Pedersen EE , Galante P , et al. Control of endodermal endocrine development by Hes-1. Nat Genet 2000; 24: 36- 44.
CrossRef
Google scholar
|
[38] |
Yang Q , Bermingham NA , Finegold MJ , et al. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 2001; 294: 2155- 8.
CrossRef
Google scholar
|
[39] |
Tian H , Biehs B , Warming S , et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 2011; 478: 255- 9.
CrossRef
Google scholar
|
[40] |
Tetteh PW , Basak O , Farin HF , et al. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 2016; 18: 203- 13.
CrossRef
Google scholar
|
[41] |
van Es JH , Sato T , van de Wetering M , et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 2012; 14: 1099- 104.
CrossRef
Google scholar
|
[42] |
Yu S , Tong K , Zhao Y , et al. Paneth cell multipotency induced by notch activation following injury. Cell Stem Cell 2018; 23: 46- 59.e5.
CrossRef
Google scholar
|
[43] |
Murata K , Jadhav U , Madha S , et al. Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells. Cell Stem Cell 2020; 26: 377- 90.e6.
CrossRef
Google scholar
|
[44] |
Tan SH , Phuah P , Tan LT , et al. A constant pool of Lgr5(+) intestinal stem cells is required for intestinal homeostasis. Cell Rep 2021; 34: 108633.
CrossRef
Google scholar
|
[45] |
Viragova S , Li D , Klein OD . Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31: 949- 60.
CrossRef
Google scholar
|
[46] |
Shyer AE , Huycke TR , Lee CH , et al. Bending gradients: how the intestinal stem cell gets its home. Cell 2015; 161: 569- 80.
CrossRef
Google scholar
|
[47] |
Huycke TR , Häkkinen TJ , Miyazaki H , et al. Patterning and folding of intestinal villi by active mesenchymal dewetting. Cell 2024; 187: 3072- 89.e20.
CrossRef
Google scholar
|
[48] |
Guiu J , Hannezo E , Yui S , et al. Tracing the origin of adult intestinal stem cells. Nature 2019; 570: 107- 11.
CrossRef
Google scholar
|
[49] |
Nusse YM , Savage AK , Marangoni P , et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 2018; 559: 109- 13.
CrossRef
Google scholar
|
[50] |
Yui S , Azzolin L , Maimets M , et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 2018; 22: 35- 49.e7.
CrossRef
Google scholar
|
[51] |
Ayyaz A , Kumar S , Sangiorgi B , et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 2019; 569: 121- 5.
CrossRef
Google scholar
|
[52] |
Kaaij LTJ , van de Wetering M , Fang F , et al. DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus. Genome Biol 2013; 14: R50.
CrossRef
Google scholar
|
[53] |
Kim TH , Li F , Ferreiro-Neira I , et al. Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. Nature 2014; 506: 511- 5.
CrossRef
Google scholar
|
[54] |
Jadhav U , Saxena M , O'Neill NK , et al. Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+intestinal stem cells. Cell Stem Cell 2017; 21: 65- 77.e5.
CrossRef
Google scholar
|
[55] |
Corsini NS , Knoblich JA . Human organoids: new strategies and methods for analyzing human development and disease. Cell 2022; 185: 2756- 69.
CrossRef
Google scholar
|
[56] |
Sato T , Vries RG , Snippert HJ , et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459: 262- 5.
CrossRef
Google scholar
|
[57] |
Watanabe S , Kobayashi S , Ogasawara N , et al. Transplantation of intestinal organoids into a mouse model of colitis. Nat Protoc 2022; 17: 649- 71.
CrossRef
Google scholar
|
[58] |
Fearon ER , Vogelstein B . A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759- 67.
CrossRef
Google scholar
|
[59] |
Medema JP , Vermeulen L . Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 2011; 474: 318- 26.
CrossRef
Google scholar
|
[60] |
Vermeulen L , Todaro M , Mello FD , et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. P Natl Acad Sci USA 2008; 105: 13427- 32.
CrossRef
Google scholar
|
[61] |
Ricci-Vitiani L , Lombardi DG , Pilozzi E , et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111- 5.
CrossRef
Google scholar
|
[62] |
O'Brien CA , Pollett A , Gallinger S , et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106- 10.
CrossRef
Google scholar
|
[63] |
Shimokawa M , Ohta Y , Nishikori S , et al. Visualization and targeting of LGR5(+) human colon cancer stem cells. Nature 2017; 545: 187- 92.
CrossRef
Google scholar
|
[64] |
Zhu P , Liu B , Fan Z . Noncoding RNAs in tumorigenesis and tumor therapy. Fundam Res 2023; 3: 692- 706.
CrossRef
Google scholar
|
[65] |
Zhu PP , Fan ZS . Cancer stem cells and tumorigenesis. Biophys Rep 2018; 4: 178- 88.
CrossRef
Google scholar
|
[66] |
Barker N , Ridgway RA , van Es JH , et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009; 457: 608- 11.
CrossRef
Google scholar
|
[67] |
Marbun VMG , Erlina L , Lalisang TJM . Genomic landscape of pathogenic mutation of APC, KRAS, TP53, PIK3CA, and MLH1 in Indonesian colorectal cancer. PLoS One 2022; 17: e0267090.
CrossRef
Google scholar
|
[68] |
Zhu L , Gibson P , Currle DS , et al. Prominin1/CD133 marks adult intestinal stem cells that are susceptible to neoplastic transformation. Cancer Res 2009; 69: 1940.
|
[69] |
Schwitalla S , Fingerle AA , Cammareri P , et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 2013; 152: 25- 38.
CrossRef
Google scholar
|
[70] |
Verhagen MP , Joosten R , Schmitt M , et al. Non-stem cell lineages as an alternative origin of intestinal tumorigenesis in the context of inflammation. Nat Genet 2024; 56: 1456- 67.
CrossRef
Google scholar
|
[71] |
Fey SK , Vaquero-Siguero N , Jackstadt R . Dark force rising: reawakening and targeting of fetal-like stem cells in colorectal cancer. Cell Rep 2024; 43: 114270.
CrossRef
Google scholar
|
[72] |
Vasquez EG , Nasreddin N , Valbuena GN , et al. Dynamic and adaptive cancer stem cell population admixture in colorectal neoplasia. Cell Stem Cell 2022; 29: 1213- 28.e8.
CrossRef
Google scholar
|
[73] |
Sharma A , Blériot C , Currenti J , et al. Oncofetal reprogramming in tumour development and progression. Nat Rev Cancer 2022; 22: 593- 602.
CrossRef
Google scholar
|
[74] |
Fumagalli A , Oost KC , Kester L , et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. Cell Stem Cell 2020; 26: 569- 78.e7.
CrossRef
Google scholar
|
[75] |
de Sousa e Melo F , Kurtova AV , Harnoss JM , et al. A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature 2017; 543: 676- 80.
CrossRef
Google scholar
|
[76] |
Cheung P , Xiol J , Dill MT , et al. Regenerative reprogramming of the intestinal stem cell state via hippo signaling suppresses metastatic colorectal cancer. Cell Stem Cell 2020; 27: 590- 604.e9.
CrossRef
Google scholar
|
[77] |
Franklin JM , Wu ZM , Guan KL . Insights into recent findings and clinical application of YAP and TAZ in cancer. Nat Rev Cancer 2023; 23: 512- 25.
CrossRef
Google scholar
|
[78] |
Ombrato L , Nolan E , Kurelac I , et al. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature 2019; 572: 603- 8.
CrossRef
Google scholar
|
[79] |
Borrelli C , Roberts M , Eletto D , et al. In vivo interaction screening reveals liver-derived constraints to metastasis. Nature 2024; 632: 411- 8.
CrossRef
Google scholar
|
[80] |
Garcia-Mayea Y , Mir C , Masson F , et al. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 2020; 60: 166- 80.
CrossRef
Google scholar
|
[81] |
Ohta Y , Fujii M , Takahashi S , et al. Cell-matrix interface regulates dormancy in human colon cancer stem cells. Nature 2022; 608: 784- 94.
CrossRef
Google scholar
|
[82] |
Seshagiri S , Stawiski EW , Durinck S , et al. Recurrent R-spondin fusions in colon cancer. Nature 2012; 488: 660- 4.
CrossRef
Google scholar
|
[83] |
Storm EE , Durinck S , de Sousa e Melo F , et al. Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function. Nature 2016; 529: 97- 100.
CrossRef
Google scholar
|
[84] |
Zapatero MR , Tong A , Opzoomer JW , et al. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell 2023; 186: 5606- 19.e24.
CrossRef
Google scholar
|
[85] |
Lotti F , Jarrar AM , Pai RK , et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med 2013; 210: 2851- 72.
CrossRef
Google scholar
|
[86] |
Beziaud L , Young CM , Alonso AM , et al. IFNγ-induced stem-like state of cancer cells as a driver of metastatic progression following immunotherapy. Cell Stem Cell 2023; 30: 818- 31.e6.
CrossRef
Google scholar
|
[87] |
Musella M , Guarracino A , Manduca N , et al. Type I IFNs promote cancer cell stemness by triggering the epigenetic regulator KDM1B. Nat Immunol 2022; 23: 1379- 92.
CrossRef
Google scholar
|
[88] |
Su S , Chen J , Yao H , et al. CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 2018; 172: 841- 56.e16.
CrossRef
Google scholar
|
[89] |
Van Neerven SM , Vermeulen L . Cell competition in development, homeostasis and cancer. Nat Rev Mol Cell Biol 2023; 24: 221- 36.
CrossRef
Google scholar
|
[90] |
van Neerven SM , de Groot NE , Nijman LE , et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature 2021; 594: 436- 41.
CrossRef
Google scholar
|
[91] |
Flanagan DJ , Pentinmikko N , Luopajarvi K , et al. NOTUM from Apcmutant cells biases clonal competition to initiate cancer. Nature 2021; 594: 430- 5.
CrossRef
Google scholar
|
[92] |
Yum MK , Han S , Fink J , et al. Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature 2021; 594: 442- 7.
CrossRef
Google scholar
|
[93] |
Yan HHN , Chan AS , Leung SY . Oncogenic mutations drive intestinal cancer initiation through paracrine remodeling. Cancer Cell 2021; 39: 913- 5.
CrossRef
Google scholar
|
[94] |
Bruens L , Ellenbroek SIJ , van Rheenen J , et al. In vivo imaging reveals existence of crypt fission and fusion in adult mouse intestine. Gastroenterology 2017; 153: 674- 7.e3.
CrossRef
Google scholar
|
[95] |
Boone PG , Rochelle LK , Ginzel JD , et al. A cancer rainbow mouse for visualizing the functional genomics of oncogenic clonal expansion. Nat Commun 2019; 10: 5490.
CrossRef
Google scholar
|
[96] |
Krishnan S , Paul PK , Rodriguez TA . Cell competition and the regulation of protein homeostasis. Curr Opin Cell Biol 2024; 87: 102323.
CrossRef
Google scholar
|
[97] |
Moya IM , Castaldo SA , Van den Mooter L , et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science 2019; 366: 1029- 34.
CrossRef
Google scholar
|
[98] |
Madan E , Pelham CJ , Nagane M , et al. Flower isoforms promote competitive growth in cancer. Nature 2019; 572: 260- 4.
CrossRef
Google scholar
|
[99] |
Cao TY , Zhang WY , Wang Q , et al. Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8+T cells. Cell 2024; 187: 2288- 304.e27.
CrossRef
Google scholar
|
[100] |
Zhang X , Li S , Malik I , et al. Reprogramming tumour-associated macrophages to outcompete cancer cells. Nature 2023; 619: 616- 23.
CrossRef
Google scholar
|
[101] |
Guo C , You Z , Shi H , et al. SLC38A2 and glutamine signalling in cDC1s dictate anti-tumour immunity. Nature 2023; 620: 200- 8.
CrossRef
Google scholar
|
[102] |
Lin JR , Wang S , Coy S , et al. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell 2023; 186: 363- 81.e19.
CrossRef
Google scholar
|
[103] |
Pelka K , Hofree M , Chen JH , et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 2021; 184: 4734- 52.e20.
|
[104] |
Bayik D , Lathia JD . Cancer stem cell-immune cell crosstalk in tumour progression. Nat Rev Cancer 2021; 21: 526- 36.
CrossRef
Google scholar
|
[105] |
Roulis M , Kaklamanos A , Schernthanner M , et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 2020; 580: 524- 9.
CrossRef
Google scholar
|
[106] |
Cen B , Wei J , Wang D , et al. Mutant APC promotes tumor immune evasion via PD-L1 in colorectal cancer. Oncogene 2021; 40: 5984- 92.
CrossRef
Google scholar
|
[107] |
Perry JM , Tao F , Roy A , et al. Overcoming Wnt-beta-catenin dependent anticancer therapy resistance in leukaemia stem cells. Nat Cell Biol 2020; 22: 689- 700.
CrossRef
Google scholar
|
[108] |
He X , Smith SE , Chen SY , et al. Tumor-initiating stem cell shapes its microenvironment into an immunosuppressive barrier and protumorigenic niche. Cell Rep 2021; 36: 109674.
CrossRef
Google scholar
|
[109] |
Hwang WL , Lan HY , Cheng WC , et al. Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J Hematol Oncol 2019; 12: 10.
CrossRef
Google scholar
|
[110] |
Goto N , Westcott PMK , Goto S , et al. SOX17 enables immune evasion of early colorectal adenomas and cancers. Nature 2024; 627: 636- 45.
CrossRef
Google scholar
|
[111] |
Yilmaz OH , Katajisto P , Lamming DW , et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 2012; 486: 490- 5.
CrossRef
Google scholar
|
[112] |
Aliluev A , Tritschler S , Sterr M , et al. Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice. Nat Metab 2021; 3: 1202- 16.
CrossRef
Google scholar
|
[113] |
Cheng CW , Biton M , Haber AL , et al. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell 2019; 178: 1115- 31.e15.
CrossRef
Google scholar
|
[114] |
Beyaz S , Chung C , Mou H , et al. Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis. Cell Stem Cell 2021; 28: 1922- 35.e5.
CrossRef
Google scholar
|
[115] |
Fu T , Coulter S , Yoshihara E , et al. FXR regulates intestinal cancer stem cell proliferation. Cell 2019; 176: 1098- 112.e18.
CrossRef
Google scholar
|
[116] |
Hudry B , Khadayate S , Miguel-Aliaga I . The sexual identity of adult intestinal stem cells controls organ size and plasticity. Nature 2016; 530: 344- 8.
CrossRef
Google scholar
|
[117] |
Li J , Lan Z , Liao W , et al. Histone demethylase KDM5D upregulation drives sex differences in colon cancer. Nature 2023; 619: 632- 9.
CrossRef
Google scholar
|
[118] |
Abdel-Hafiz HA , Schafer JM , Chen X , et al. Y chromosome loss in cancer drives growth by evasion of adaptive immunity. Nature 2023; 619: 624- 31.
CrossRef
Google scholar
|
[119] |
Kaiko GE , Ryu SH , Koues OI , et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 2016; 165: 1708- 20.
CrossRef
Google scholar
|
[120] |
Lee YS , Kim TY , Kim Y , et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe 2018; 24: 833- 46.e6.
CrossRef
Google scholar
|
[121] |
Cao YG , Bae S , Villarreal J , et al. Faecalibaculum rodentium remodels retinoic acid signaling to govern eosinophil-dependent intestinal epithelial homeostasis. Cell Host Microbe 2022; 30: 1295- 310.e8.
CrossRef
Google scholar
|
[122] |
Zhu P , Lu T , Chen Z , et al. 5-hydroxytryptamine produced by enteric serotonergic neurons initiates colorectal cancer stem cell self-renewal and tumorigenesis. Neuron 2022; 110: 2268- 82.e4.
CrossRef
Google scholar
|
[123] |
Li Q , Chan H , Liu WX , et al. Carnobacterium maltaromaticum boosts intestinal vitamin D production to suppress colorectal cancer in female mice. Cancer Cell 2023; 41: 1450- 65.e8.
CrossRef
Google scholar
|
[124] |
Ricciardiello L , Ahnen DJ , Lynch PM . Chemoprevention of hereditary colon cancers: time for new strategies. Nat Rev Gastroenterol Hepatol 2016; 13: 352- 61.
CrossRef
Google scholar
|
/
〈 |
|
〉 |