Deciphering the dynamic single-cell transcriptional landscape in the ocular surface ectoderm differentiation system

Canwei Zhang, Zesong Lin, Yankun Yu, Siqi Wu, Huaxing Huang, Ying Huang, Jiafeng Liu, Kunlun Mo, Jieying Tan, Zhuo Han, Mingsen Li, Wei Zhao, Hong Ouyang, Xiangjun Chen, Li Wang

Life Medicine ›› 2024, Vol. 3 ›› Issue (5) : lnae033.

PDF(9453 KB)
Life Medicine All Journals
PDF(9453 KB)
Life Medicine ›› 2024, Vol. 3 ›› Issue (5) : lnae033. DOI: 10.1093/lifemedi/lnae033
Article

Deciphering the dynamic single-cell transcriptional landscape in the ocular surface ectoderm differentiation system

Author information +
History +

Abstract

The ocular surface ectoderm (OSE) is essential for the development of the ocular surface, yet the molecular mechanisms driving its differentiation are not fully understood. In this study, we used single-cell transcriptomic analysis to explore the dynamic cellular trajectories and regulatory networks during the in vitro differentiation of embryonic stem cells (ESCs) into the OSE lineage. We identified nine distinct cell subpopulations undergoing differentiation along three main developmental branches: neural crest, neuroectodermal, and surface ectodermal lineages. Key marker gene expression, transcription factor activity, and signaling pathway insights revealed stepwise transitions from undifferentiated ESCs to fate-specified cell types, including a PAX6 + TP63 + population indicative of OSE precursors. Comparative analysis with mouse embryonic development confirmed the model's accuracy in mimicking in vivo epiblast-to-surface ectoderm dynamics. By integrating temporal dynamics of transcription factor activation and cell-cell communication, we constructed a comprehensive molecular atlas of the differentiation pathway from ESCs to distinct ectodermal lineages. This study provides new insights into the cellular heterogeneity and regulatory mechanisms of OSE development, aiding the understanding of ocular surface biology and the design of cell-based therapies for ocular surface disorders.

Keywords

ocular surface ectoderm / embryonic stem cells / surface ectoderm / single-cell transcriptomics

Cite this article

Download citation ▾
Canwei Zhang, Zesong Lin, Yankun Yu, Siqi Wu, Huaxing Huang, Ying Huang, Jiafeng Liu, Kunlun Mo, Jieying Tan, Zhuo Han, Mingsen Li, Wei Zhao, Hong Ouyang, Xiangjun Chen, Li Wang. Deciphering the dynamic single-cell transcriptional landscape in the ocular surface ectoderm differentiation system. Life Medicine, 2024, 3(5): lnae033 https://doi.org/10.1093/lifemedi/lnae033

References

[1]
Gipson IK . The ocular surface: the challenge to enable and protect vision: the Friedenwald lecture. Invest Ophthalmol Vis Sci 2007; 48: 4391- 8.
CrossRef Google scholar
[2]
Di Girolamo N , Park M . Cell identity changes in ocular surface Epithelia. Prog Retin Eye Res 2023; 95: 101148.
CrossRef Google scholar
[3]
Hayashi R , Ishikawa Y , Sasamoto Y , et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 2016; 531: 376- 80.
CrossRef Google scholar
[4]
Shortt AJ , Secker GA , Munro PM , et al. Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 2007; 25: 1402- 9.
CrossRef Google scholar
[5]
Roshandel D , Semnani F , Rayati Damavandi A , et al. Genetic predisposition to ocular surface disorders and opportunities for gene-based therapies. Ocul Surf 2023; 29: 150- 65.
CrossRef Google scholar
[6]
Connolly HM , Niaz T , Bowen JM . What is Marfan syndrome? JAMA 2023; 329: 1618.
CrossRef Google scholar
[7]
Ong Tone S , Kocaba V , Böhm M , et al. Fuchs endothelial corneal dystrophy: the vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 2021; 80: 100863.
CrossRef Google scholar
[8]
Slavotinek AM . Eye development genes and known syndromes. Mol Genet Metab 2011; 104: 448- 56.
CrossRef Google scholar
[9]
Di Iorio E , Kaye SB , Ponzin D , et al. Limbal stem cell deficiency and ocular phenotype in ectrodactyly-ectodermal dysplasia-clefting syndrome caused by p63 mutations. Ophthalmology 2012; 119: 74- 83.
CrossRef Google scholar
[10]
Turunen JA , Tuisku IS , Repo P , et al. Epithelial recurrent erosion dystrophy (ERED) from the splice site altering COL17A1 variant c.3156C > T in families of Finnish-Swedish ancestry. Acta Ophthalmol 2024; 102: 296- 305.
CrossRef Google scholar
[11]
Weiss JS , Rapuano CJ , Seitz B , et al. IC3D classification of corneal dystrophies-edition 3. Cornea 2024; 43: 466- 527.
CrossRef Google scholar
[12]
Pattison JM , Melo SP , Piekos SN , et al. Retinoic acid and BMP4 cooperate with p63 to alter chromatin dynamics during surface epithelial commitment. Nat Genet 2018; 50: 1658- 65.
CrossRef Google scholar
[13]
Li L , Wang Y , Torkelson JL , et al. TFAP2C- and p63-dependent networks sequentially rearrange chromatin landscapes to drive human epidermal lineage commitment. Cell Stem Cell 2019; 24: 271- 84.e8.
CrossRef Google scholar
[14]
Thomson JA , Itskovitz-Eldor J , Shapiro SS , et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145- 7.
CrossRef Google scholar
[15]
Zhang K , Ding S . Stem cells and eye development. N Engl J Med 2011; 365: 370- 2.
CrossRef Google scholar
[16]
Huang H , Liu J , Li M , et al. Cis-regulatory chromatin loops analysis identifies GRHL3 as a master regulator of surface epithelium commitment. Sci Adv 2022; 8: eabo5668.
CrossRef Google scholar
[17]
Bao M , Cornwall-Scoones J , Sanchez-Vasquez E , et al. Stem cell-derived synthetic embryos self-assemble by exploiting cadherin codes and cortical tension. Nat Cell Biol 2022; 24: 1341- 9.
CrossRef Google scholar
[18]
Ouyang H , Xue Y , Lin Y , et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature 2014; 511: 358- 61.
CrossRef Google scholar
[19]
Li Y , Giovannini S , Wang T , et al. TOR Centre. p63: a crucial player in epithelial stemness regulation. Oncogene 2023; 42: 3371- 84.
CrossRef Google scholar
[20]
Siebel C , Lendahl U . Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 2017; 97: 1235- 94.
CrossRef Google scholar
[21]
Diacou R , Nandigrami P , Fiser A , et al. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91: 101093.
CrossRef Google scholar
[22]
Nomi K , Hayashi R , Ishikawa Y , et al. Generation of functional conjunctival epithelium, including goblet cells, from human iPSCs. Cell Rep 2021; 34: 108715.
CrossRef Google scholar
[23]
Stark R , Grzelak M , Hadfield J . RNA sequencing: the teenage years. Nat Rev Genet 2019; 20: 631- 56.
CrossRef Google scholar
[24]
Tang F , Barbacioru C , Wang Y , et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 2009; 6: 377- 82.
CrossRef Google scholar
[25]
Han X , Chen H , Huang D , et al. Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNAsequencing. Genome Biol 2018; 19: 47.
CrossRef Google scholar
[26]
Cao J , Spielmann M , Qiu X , et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 2019; 566: 496- 502.
CrossRef Google scholar
[27]
Setty M , Kiseliovas V , Levine J , et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat Biotechnol 2019; 37: 451- 60.
CrossRef Google scholar
[28]
Street K , Risso D , Fletcher RB , et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom 2018; 19: 477.
CrossRef Google scholar
[29]
Pijuan-Sala B , Griffiths JA , Guibentif C , et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 2019; 566: 490- 5.
CrossRef Google scholar
[30]
Cong L , Zhang BN , Xie LX . [Advances in gene therapy of ocular surface and corneal diseases]. Zhonghua Yan Ke Za Zhi 2023; 59: 666- 72.
[31]
Hayashi R , Ishikawa Y , Katori R , et al. Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nat Protoc 2017; 12: 683- 96.
CrossRef Google scholar
[32]
Simeone A . Otx1 and Otx2 in the development and evolution of the mammalian brain. EMBO J 1998; 17: 6790- 8.
CrossRef Google scholar
[33]
Novak D , Hüser L , Elton JJ , et al. SOX2 in development and cancer biology. Semin Cancer Biol 2020; 67: 74- 82.
CrossRef Google scholar
[34]
de Melo J , Zibetti C , Clark BS , et al. Lhx2 is an essential factor for retinal gliogenesis and notch signaling. J Neurosci 2016; 36: 2391- 405.
CrossRef Google scholar
[35]
Irie S , Sanuki R , Muranishi Y , et al. Rax homeoprotein regulates photoreceptor cell maturation and survival in association with Crx in the postnatal mouse retina. Mol Cell Biol 2015; 35: 2583- 96.
CrossRef Google scholar
[36]
Shaham O , Menuchin Y , Farhy C , et al. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 2012; 31: 351- 76.
CrossRef Google scholar
[37]
Chen YC , Ma N-X , Pei Z-F , et al. A NeuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol Ther 2020; 28: 217- 34.
CrossRef Google scholar
[38]
Siddiqui T , Cosacak MI , Popova S , et al. Nerve growth factor receptor (Ngfr) induces neurogenic plasticity by suppressing reactive astroglial Lcn2/Slc22a17 signaling in Alzheimer's disease. NPJ Regen Med 2023; 8: 33.
CrossRef Google scholar
[39]
Tanaka EM , Ferretti P . Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci 2009; 10: 713- 23.
CrossRef Google scholar
[40]
Zhang F , Li X , Tian W . Unsupervised inference of developmental directions for single cells using VECTOR. Cell Rep 2020; 32: 108069.
CrossRef Google scholar
[41]
Lu YA , Liao C-T , Raybould R , et al. Single-nucleus RNA sequencing identifies new classes of proximal tubular epithelial cells in kidney fibrosis. J Am Soc Nephrol 2021; 32: 2501- 16.
CrossRef Google scholar
[42]
Jin S , Guerrero-Juarez CF , Zhang L , et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12: 1088.
CrossRef Google scholar
[43]
Tang M , Kaymaz Y , Logeman BL , et al. Evaluating single-cell cluster stability using the Jaccard similarity index. Bioinformatics 2021; 37: 2212- 4.
CrossRef Google scholar
[44]
Saeki S , Kumegawa K , Takahashi Y , et al. Transcriptomic intratumor heterogeneity of breast cancer patient-derived organoids may reflect the unique biological features of the tumor of origin. Breast Cancer Res 2023; 25: 21.
CrossRef Google scholar
[45]
Li M , Zhu L , Liu J , et al. Loss of FOXC1 contributes to the corneal epithelial fate switch and pathogenesis. Signal Transduct Target Ther 2021; 6: 5.
CrossRef Google scholar
[46]
Mascrez B , Ghyselinck NB , Chambon P , et al. A transcriptionally silent RXRalpha supports early embryonic morphogenesis and heart development. Proc Natl Acad Sci U S A 2009; 106: 4272- 7.
CrossRef Google scholar
[47]
Wang Z , Oron E , Nelson B , et al. Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 2012; 10: 440- 54.
CrossRef Google scholar
[48]
Irwin EF , Gupta R , Dashti DC , et al. Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials 2011; 32: 6912- 9.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s). Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(9453 KB)

Supplementary files

Supplementary materials (11569 KB)

13

Accesses

0

Citations

1

Altmetric

Detail

Sections
Recommended

/