Natural flavonoid glycosides Chrysosplenosides I & A rejuvenate intestinal stem cell aging via activation of PPARγ signaling

Jinbao Ye , La Yan , Yu Yuan , Fang Fu , Lu Yuan , Xinxin Fan , Juanyu Zhou , Yuedan Zhu , Xingzhu Liu , Gang Ren , Haiyang Chen

Life Medicine ›› 2024, Vol. 3 ›› Issue (3) : lnae025

PDF (5341KB)
Life Medicine ›› 2024, Vol. 3 ›› Issue (3) : lnae025 DOI: 10.1093/lifemedi/lnae025
Article

Natural flavonoid glycosides Chrysosplenosides I & A rejuvenate intestinal stem cell aging via activation of PPARγ signaling

Author information +
History +
PDF (5341KB)

Abstract

The decline in intestinal stem cell (ISC) function is a hallmark of aging, contributing to compromised intestinal regeneration and increased incidence of age-associated diseases. Novel therapeutic agents that can rejuvenate aged ISCs are of paramount importance for extending healthspan. Here, we report on the discovery of Chrysosplenosides I and A (CAs 1 & 2), flavonol glycosides from the Xizang medicinal plant Chrysosplenium axillare Maxim., which exhibit potent anti-aging effects on ISCs. Our research, using Drosophila models, reveals that CAs 1 & 2 treatments not only restrain excessive ISC proliferation, thereby preserving intestinal homeostasis, but also extend the lifespan of aging Drosophila. In aged mouse intestinal organoids, CAs 1 & 2 enhance the growth and budding of intestinal organoids, indicating improved regenerative capacity. Mechanistic investigations show that CAs 1 & 2 exert their effects by activating the peroxisome proliferator-activated receptor-gamma (PPARγ) and concurrently inhibiting the epidermal growth factor receptor (EGFR) signaling pathways. Our findings position CAs 1 & 2 as promising candidates for ameliorating ISC aging and suggest that targeting PPARγ, in particular, may offer a therapeutic strategy to counteract age-related intestinal dysfunction.

Keywords

intestinal stem cell / aging / chrysosplenoside / Drosophila / PPAR

Cite this article

Download citation ▾
Jinbao Ye, La Yan, Yu Yuan, Fang Fu, Lu Yuan, Xinxin Fan, Juanyu Zhou, Yuedan Zhu, Xingzhu Liu, Gang Ren, Haiyang Chen. Natural flavonoid glycosides Chrysosplenosides I & A rejuvenate intestinal stem cell aging via activation of PPARγ signaling. Life Medicine, 2024, 3(3): lnae025 DOI:10.1093/lifemedi/lnae025

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu B , Qu J , Zhang W , et al. A stem cell aging framework, from mechanisms to interventions. Cell Rep 2022; 41: 111451.

[2]

Götz M . Revising concepts about adult stem cells. Sci 2018; 359: 639- 40.

[3]

Jasper H . Intestinal stem cell aging: origins and interventions. Annu Rev Physiol 2020; 82: 203- 26.

[4]

Adams Peter D , Jasper H , Rudolph KL . Aging-induced stem cell mutations as drivers for disease and cancer. Cell Stem Cell 2015; 16: 601- 12.

[5]

Ha CY , Katz S . Clinical implications of ageing for the management of IBD. Nat Rev Gastroenterol Hepatol 2013; 11: 128- 38.

[6]

Zhu J , An Y , Wang X , et al. The natural product rotundic acid treats both aging and obesity by inhibiting PTP1B.Life Med. 2022; 1: 372- 86.

[7]

Shah MA , Faheem HI , Hamid A , et al. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases. Med Res Rev 2023; 44: 235- 74.

[8]

Xu Q , Fu Q , Li Z , et al. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat Metab 2021; 3: 1706- 26.

[9]

Yan L , Guo X , Zhou J , et al. Quercetin prevents intestinal stem cell aging via scavenging ROS and inhibiting insulin signaling in Drosophila. Antioxidants 2022; 12: 59.

[10]

Zhi-Ling Y , Chi Z , Hui-Qin G , et al. Isolation and identification of chemical constituents from Tibetan medicine “Ya-Ji-Ma” (Chrysosplenium axillare). Chinese Traditional and Herbal Drugs 2022; 53: 354- 61.

[11]

Cai Z , Li W , Jiang W , et al. Protective effect of the ethyl acetate fraction of Qinghai-Tibet Plateau medicinal plant Chrysosplenium axillare Maxim. against ANIT-induced cholestatic liver injury in mice. Phytomedicine Plus 2021; 1: 100076.

[12]

Fox DT , Cohen E , Smith-Bolton R . Model systems for regeneration: Drosophila. Development 2020; 147: dev173781.

[13]

Micchelli CA , Perrimon N . Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 2005; 439: 475- 9.

[14]

Hales KG , Korey CA , Larracuente AM , et al. Genetics on the fly: a primer on the Drosophila model system. Genetics 2015; 201: 815- 42.

[15]

Ohlstein B , Spradling A . The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 2005; 439: 470- 4.

[16]

Lu T-C , Brbić M , Park Y-J , et al. Aging Fly Cell Atlas identifies exhaustive aging features at cellular resolution. Sci 2023; 380: eadg0934.

[17]

Clevers H . Modeling development and disease with organoids. Cell 2016; 165: 1586- 97.

[18]

Zhao Q , Guan J , Wang X . Intestinal stem cells and intestinal organoids. J Genet Genomics 2020; 47: 289- 99.

[19]

Choi NH , Kim JG , Yang DJ , et al. Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 2008; 7: 318- 34.

[20]

Nalapareddy K , Nattamai KJ , Kumar RS , et al. Canonical wnt signaling ameliorates aging of intestinal stem cells. Cell Rep 2017; 18: 2608- 21.

[21]

Lin G , Xu N , Xi R . Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 2008; 455: 1119- 23.

[22]

Obata F , Tsuda-Sakurai K , Yamazaki T , et al. Nutritional control of stem cell division through S-Adenosylmethionine in Drosophila intestine. Dev Cell 2018; 44: 741- 51.e3.

[23]

Vaccaro A , Kaplan Dor Y , Nambara K , et al. Sleep loss can cause death through accumulation of reactive oxygen species in the gut. Cell 2020; 181: 1307- 28.e15.

[24]

Du G , Xiong L , Li X , et al. Peroxisome elevation induces stem cell differentiation and intestinal epithelial repair. Dev Cell 2020; 53: 169- 84.e11.

[25]

Zhou Q , Yu L , Cook JR , et al. Deciphering the decline of metabolic elasticity in aging and obesity. Cell Metab 2023; 35: 1661- 71.e6.

[26]

To KWK , Wu WKK , Loong HHF . PPARgamma agonists sensitize PTEN-deficient resistant lung cancer cells to EGFR tyrosine kinase inhibitors by inducing autophagy. Mol Cell Pharmacol 2018; 823: 19- 26.

[27]

Oh J , Lee YD , Wagers AJ . Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 2014; 20: 870- 80.

[28]

Shen N , Wang T , Gan Q , et al. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem 2022; 383: 132531.

[29]

Ahmadian M , Suh JM , Hah N , et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 2013; 19: 557- 66.

[30]

Korbecki J , Bobiński R , Dutka M . Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res 2019; 68: 443- 58.

[31]

Vallée A , Lecarpentier Y . Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front Immunol 2018; 9: 745.

[32]

Du G , Liu Z , Yu Z , et al. Taurine represses age-associated gut hyperplasia in Drosophila via counteracting endoplasmic reticulum stress. Aging Cell 2021; 20: e13319.

[33]

Rodriguez-Fernandez IA , Tauc HM , Jasper H . Hallmarks of aging Drosophila intestinal stem cells. Mech Ageing Dev 2020; 190: 111285.

[34]

Wu S-C , Cao Z-S , Chang K-M , et al. Intestinal microbial dysbiosis aggravates the progression of Alzheimer’s disease in Drosophila. Nat Commun 2017; 8: 24.

[35]

Gorgulla C , Çınaroğlu SS , Fischer PD , et al. VirtualFlow ants—ultra-large virtual screenings with artificial intelligence driven docking algorithm based on ant colony optimization. Int J Mol Sci 2021; 22: 5807.

[36]

Ji L , Song T , Ge C , et al. Identification of bioactive compounds and potential mechanisms of scutellariae radix-coptidis rhizoma in the treatment of atherosclerosis by integrating network pharmacology and experimental validation. Biomed Pharmacother 2023; 165: 115210.

[37]

Eberhardt J , Santos-Martins D , Tillack AF , et al. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 2021; 61: 3891- 8.

[38]

Riyaphan J , Pham D-C , Leong MK , et al. In silico approaches to identify polyphenol compounds as α-glucosidase and α-amylase inhibitors against type-II diabetes. Biomolecules 2021; 11: 1877.

RIGHTS & PERMISSIONS

The Author(s). Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (5341KB)

Supplementary files

Supplementary materials

391

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/