Novel single-cell mtDNA sequencing technology reveals hidden mutations in oocytes, blastoids, and stem cells
Ismail M. Shakir, Mo Li
Novel single-cell mtDNA sequencing technology reveals hidden mutations in oocytes, blastoids, and stem cells
[1] |
Bi C, Wang L, Fan Y, et al. Single-cell individual full-length mtDNA sequencing by iMiGseq uncovers unexpected heteroplasmy shifts in mtDNA editing. Nucleic Acids Res 2023;51:e48.
CrossRef
Google scholar
|
[2] |
Bi C, Wang L, Fan Y, et al. Quantitative haplotype-resolved analysis of mitochondrial DNA heteroplasmy in human single oocytes, blastoids, and pluripotent stem cells. Nucleic Acids Res 2023;51:3793–805.
CrossRef
Google scholar
|
[3] |
Bi C, Wang L, Yuan B, et al. Long-read individual-molecule sequencing reveals CRISPR-induced genetic heterogeneity in human ESCs. Genome Biol 2020;21:213.
CrossRef
Google scholar
|
[4] |
Fan Y, Min Z, Alsolami S, et al. Generation of human blastocyst-like structures from pluripotent stem cells. Cell Discov 2021;7:81.
CrossRef
Google scholar
|
[5] |
Mok BY, de Moraes MH, Zeng J, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020;583:631–7.
CrossRef
Google scholar
|
/
〈 | 〉 |