From monkey single-cell atlases into a broader biomedical perspective
Xuanxuan Zou, Xi Dai, Alexios-Fotios A. Mentis, Miguel A. Esteban, Longqi Liu, Lei Han
From monkey single-cell atlases into a broader biomedical perspective
[1] |
Liu Z, Zhang Z. Mapping cell types across human tissues. Science 2022;376:695–6.
CrossRef
Google scholar
|
[2] |
Zhong S, Ding W, Sun L, et al. Decoding the development of the human hippocampus. Nature 2020;577:531–6.
CrossRef
Google scholar
|
[3] |
Han L, Wei X, Liu C, et al. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 2022;604:723–31.
CrossRef
Google scholar
|
[4] |
Consortium TTM. Tabula Microcebus: a transcriptomic cell atlas of mouse lemur, an emerging primate model organism. bioRxiv 2021, preprint: not peer reviewed. https://doi.org/10.1101/2021.12.12.469460.
|
[5] |
Ma S, Sun S, Li J, et al. Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res 2021;31:415–32.
CrossRef
Google scholar
|
[6] |
Eraslan G, Drokhlyansky E, Anand S, et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 2022;376:eabl4290.
CrossRef
Google scholar
|
[7] |
Wang S, Zheng Y, Li J, et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell 2020;180:585–600.
CrossRef
Google scholar
|
[8] |
Zhang H, Li J, Ren J, et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 2021;12:695–716.
CrossRef
Google scholar
|
[9] |
Chen A, Liao S, Cheng M, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 2022;185:1777–92.
CrossRef
Google scholar
|
/
〈 | 〉 |