Fat shapes fate: unlock the destiny of a cell with single-cell metabolomics
Ziyi Wang, Fei Sun, Wei Xiong
Fat shapes fate: unlock the destiny of a cell with single-cell metabolomics
[1] |
Wang D, Bodovitz S. Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 2010;28:281–90.
CrossRef
Google scholar
|
[2] |
Driskell RR, Watt FM. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol 2015;25:92–9.
CrossRef
Google scholar
|
[3] |
Sorrell JM, Caplan AI. Fibroblast heterogeneity: more than skin deep. J Cell Science 2004;117:667–75.
CrossRef
Google scholar
|
[4] |
Griffin MF, desJardins-Park HE, Mascharak S, et al. Understanding the impact of fibroblast heterogeneity on skin fibrosis. Dis Model Mech 2020;13:dmm044164.
CrossRef
Google scholar
|
[5] |
Watt FM, Fujiwara H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harbor Perspect Biol 2011;3:a005124.
CrossRef
Google scholar
|
[6] |
Capolupo L, Khven I, Lederer AR, et al. Sphingolipids control dermal fibroblast heterogeneity. Science 2022;376:eabh1623.
CrossRef
Google scholar
|
[7] |
Zhu H, Zou G, Wang N, et al. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc Natl Acad Sci USA 2017;114:2586–91.
CrossRef
Google scholar
|
[8] |
Zhu H, Wang N, Yao L, et al. Moderate UV exposure enhances learning and memory by promoting a novel glutamate biosynthetic pathway in the brain. Cell 2018;173:1716–27.e17.
CrossRef
Google scholar
|
[9] |
Lombard-Banek C, Li J, Portero EP, et al. In vivo subcellular mass spectrometry enables proteo-metabolomic single-cell systems biology in a chordate embryo developing to a normally behaving tadpole (X. laevis)*. Angew Chem Int Ed Engl 2021;60:12852–8.
CrossRef
Google scholar
|
[10] |
Pareek V, Tian H, Winograd N, et al. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science 2020;368:283–90.
CrossRef
Google scholar
|
/
〈 | 〉 |