Hidden totipotency in naïve human pluripotent stem cell cultures
Daniel A. Schmitz, Jun Wu
Hidden totipotency in naïve human pluripotent stem cell cultures
[1] |
Macfarlan TS, Gifford WD, Driscoll S, et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 2012;487:57–63.
CrossRef
Google scholar
|
[2] |
Hendrickson PG, Doráis JA, Grow EJ, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat Genet 2017;49:925–34.
CrossRef
Google scholar
|
[3] |
Shen H, Yang M, Li S, et al. Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell 2021;184:2843–59.
CrossRef
Google scholar
|
[4] |
Yang M, Yu H, Yu X, et al. Chemical-induced chromatin remodeling reprograms mouse ESCs to totipotent-like stem cells. Cell Stem Cell 2022;29:400–18.
CrossRef
Google scholar
|
[5] |
Xu Y, Zhao J, Ren Y, et al. Derivation of totipotent-like stem cells with blastocyst-like structure forming potential. Cell Res 2022;32: 513–29.
CrossRef
Google scholar
|
[6] |
Wang Y, Zhao C, Hou Z, et al. Unique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) at naïve state. Elife 2018;7:e29518.
CrossRef
Google scholar
|
[7] |
Yu L, Wei Y, Duan J, et al. Blastocyst-like structures generated from human pluripotent stem cells. Nature 2021;591:620–6.
CrossRef
Google scholar
|
[8] |
Taubenschmid-Stowers J, Rostovskaya M, Santos F, et al. 8C-like cells capture the human zygotic genome activation program in vitro. Cell Stem Cell 2022;29:449–59.
CrossRef
Google scholar
|
[9] |
Moya-Jódar M, Ullate-Agote A, Barlabé P, et al. Revealing cell populations catching the early stages of the human embryo development in naïve pluripotent stem cells. bioRxiv 2022.
CrossRef
Google scholar
|
[10] |
Mazid MA, Ward C, Luo Z, et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage. Nature 2022;605:315–24.
CrossRef
Google scholar
|
/
〈 | 〉 |