Hematopoietic anomalies fuels multiple sclerosis
Zhongyang Wu, Xu Zhou
Hematopoietic anomalies fuels multiple sclerosis
[1] |
AbsintaM, MaricD, GharagozlooM, et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 2021;597:709–14.
CrossRef
Google scholar
|
[2] |
YongHYF, YongVW. Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat Rev Neurol 2022;18:40–55.
CrossRef
Google scholar
|
[3] |
CreeBAC, Oksenberg JR, HauserSL. Multiple sclerosis: two decades of progress. Lancet Neurol 2022;21:211–4.
CrossRef
Google scholar
|
[4] |
RederAT, GencK, ByskoshPV, et al. Monocyte activation in multiple sclerosis. Mult Scler 1998;4:162–8.
CrossRef
Google scholar
|
[5] |
RumbleJM, HuberAK, KrishnamoorthyG, et al. Neutrophil-related factors as biomarkers in EAE and MS. J Exp Med 2015;212: 23–35.
CrossRef
Google scholar
|
[6] |
ShiK, LiH, ChangT, et al. Bone marrow hematopoiesis drives multiple sclerosis progression. Cell 2022;185:1–14.
CrossRef
Google scholar
|
[7] |
SugiyamaT, KoharaH, NodaM, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006;25:977–88.
CrossRef
Google scholar
|
[8] |
MillerAE, Chitnis T, CohenBA, et al; National Medical Advisory Committee of the National Multiple Sclerosis Society. Autologous hematopoietic stem cell transplant in multiple sclerosis: recommendations of the national multiple sclerosis society. JAMA neurology 2021;78:241–6.
CrossRef
Google scholar
|
[9] |
NicholasRS, RhoneEE, MariottiniA, et al. Autologous hematopoietic stem cell transplantation in active multiple sclerosis: a real-world case series. Neurology 2021;97:e890–901.
CrossRef
Google scholar
|
[10] |
CugurraA, Mamuladze T, RustenhovenJ, et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 2021;373:eabf7844.
CrossRef
Google scholar
|
/
〈 | 〉 |