Sphingolipids mediate lipotoxicity in muscular dystrophies
Yuefan Wang, Ng Shyh-Chang
Sphingolipids mediate lipotoxicity in muscular dystrophies
[1] |
Datta N, Ghosh PS. Update on muscular dystrophies with focus on novel treatments and biomarkers. Curr Neurol Neurosci Rep 2020;20:14.
CrossRef
Google scholar
|
[2] |
Deconinck N, Dan B. Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 2007;36:1–7.
CrossRef
Google scholar
|
[3] |
Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 2018;19:175–91.
CrossRef
Google scholar
|
[4] |
Summers SA, Chaurasia B, Holland WL. Metabolic messengers: ceramides. Nat Metab 2019;1:1051–8.
CrossRef
Google scholar
|
[5] |
Laurila PP, Luan P, Wohlwend M, et al. Inhibition of sphingolipid de novo synthesis counteracts muscular dystrophy. Sci Adv 2022;8:eabh4423.
CrossRef
Google scholar
|
[6] |
Miyake Y, Kozutsumi Y, Nakamura S, et al. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem Biophys Res Commun 1995;211:396–403.
CrossRef
Google scholar
|
[7] |
Li CW, Yu K, Shyh-Chang N, et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle 2022;13:781–94.
CrossRef
Google scholar
|
[8] |
Chaurasia B, Summers SA. Ceramides in metabolism: key lipotoxic players. Annu Rev Physiol 2021;83:303–30.
CrossRef
Google scholar
|
[9] |
Rodríguez-Cruz M, Sanchez R, Escobar RE, et al. Evidence of insulin resistance and other metabolic alterations in boys with duchenne or becker muscular dystrophy. Int J Endocrinol 2015;2015:867273.
CrossRef
Google scholar
|
[10] |
Ma S, Shyh-Chang N. The metabaging cycle. Cell Prolif 2022;55:e13197.
CrossRef
Google scholar
|
/
〈 | 〉 |