Aging-associated accumulation of mitochondrial DNA mutations in tumor origin

Minghua Kong, Lishu Guo, Weilin Xu, Chengpeng He, Xiaoyan Jia, Zhiyao Zhao, Zhenglong Gu

PDF(1319 KB)
PDF(1319 KB)
Life Medicine ›› 2022, Vol. 1 ›› Issue (2) : 149-167. DOI: 10.1093/lifemedi/lnac014
Review
Review

Aging-associated accumulation of mitochondrial DNA mutations in tumor origin

Author information +
History +

Abstract

The majority of cancer patients are among aged population, suggesting an urgent need to advance our knowledge on complicated relationship between aging and cancer. It has been hypothesized that metabolic changes during aging could act as a driver for tumorigenesis. Given the fact that mitochondrial DNA (mtDNA) mutations are common in both tumors and aged tissues, it is interesting to contemplate possible role of age-related mtDNA mutations in tumorigenesis. MtDNA encodes genes essential for mitochondrial metabolism, and mtDNA mutates at a much higher rate than nuclear genome. Random drifting of somatic mtDNA mutations, as a result of cell division or mitochondrial turnover during aging, may lead to more and more cells harboring high-frequency pathogenic mtDNA mutations, albeit at different loci, in single-cells. Such mutations can induce metabolic reprogramming, nuclear genome instability and immune response, which might increase the likelihood of tumorigenesis. In this review, we summarize current understanding of how mtDNA mutations accumulate with aging and how these mutations could mechanistically contribute to tumor origin. We also discuss potential prevention strategies for mtDNA mutation-induced tumorigenesis, and future works needed in this direction.

Keywords

aging / mtDNA mutation / metabolism / genome instability / tumorigenesis

Cite this article

Download citation ▾
Minghua Kong, Lishu Guo, Weilin Xu, Chengpeng He, Xiaoyan Jia, Zhiyao Zhao, Zhenglong Gu. Aging-associated accumulation of mitochondrial DNA mutations in tumor origin. Life Medicine, 2022, 1(2): 149‒167 https://doi.org/10.1093/lifemedi/lnac014

References

[1]
CampisiJ. Aging, cellular senescence, and cancer. Annu Rev Physiol 2013;75:685–705.
CrossRef Google scholar
[2]
WallaceDC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005;39:359–407.
CrossRef Google scholar
[3]
JemalA, SiegelR, XuJQ, et al. Cancer Statistics, 2010. CA Cancer J Clin 2010;60(5):277–300.
CrossRef Google scholar
[4]
ZhangX, MengX, ChenY, et al. The biology of aging and cancer frailty, inflammation, and immunity. Cancer J 2017;23(4):201–5.
CrossRef Google scholar
[5]
KnudsonAG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68(4):820–3.
CrossRef Google scholar
[6]
SedelnikovaOA, Horikawa I, ZimonjicDB, et al. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol 2004;6(2):168–70.
CrossRef Google scholar
[7]
XuY, RogersCJ. Impact of physical activity and energy restriction on immune regulation of cancer. Transl Cancer Res 2020;9(9):5700–31.
CrossRef Google scholar
[8]
Pomatto-WatsonLCD, Bodogai M, BosompraO, et al. Daily caloric restriction limits tumor growth more effectively than caloric cycling regardless of dietary composition. Nat Commun 2021;12(1):6201.
CrossRef Google scholar
[9]
GierachGL, ChangSC, BrintonLA, et al. Physical activity, sedentary behavior, and endometrial cancer risk in the NIH-AARP Diet and Health Study. Int J Cancer 2009;124(9):2139–47.
CrossRef Google scholar
[10]
BoothFW, Roberts CK, LayeMJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol 2012;2(2):1143–211.
CrossRef Google scholar
[11]
WuLE, GomesAP, SinclairDA. Geroncogenesis: metabolic changes during aging as a driver of tumorigenesis. Cancer Cell 2014;25(1):12–19.
CrossRef Google scholar
[12]
van der GiezenM, TovarJ. Degenerate mitochondria. EMBO Rep 2005;6(6):525–30.
CrossRef Google scholar
[13]
TikuV, TanMW, DikicI. Mitochondrial functions in infection and immunity. Trends Cell Biol 2020;30(4):263–75.
CrossRef Google scholar
[14]
ZhuD, LiX, TianY. Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci 2022;S0968-0004(22):00067–6.
[15]
BakerDJ, PelegS. Biphasic modeling of mitochondrial metabolism dysregulation during aging. Trends Biochem Sci 2017;42(9):702–11.
CrossRef Google scholar
[16]
PughTD, Conklin MW, EvansTD, et al. A shift in energy metabolism anticipates the onset of sarcopenia in rhesus monkeys. Aging Cell 2013;12(4):672–81.
CrossRef Google scholar
[17]
ZieglerDV, WileyCD, VelardeMC. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell 2015;14(1):1–7.
CrossRef Google scholar
[18]
LiH, SloneJ, FeiL, et al. Mitochondrial DNA variants and common diseases: a mathematical model for the diversity of age-related mtDNA mutations. Cells 2019;8(6):608.
CrossRef Google scholar
[19]
YuanY, JuYS, KimY, et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat Genet 2020;52(3):342–52.
CrossRef Google scholar
[20]
WallaceDC. Mitochondria and cancer. Nat Rev Cancer 2012;12(10):685–98.
CrossRef Google scholar
[21]
KopinskiPK, SinghLN, ZhangS, et al. Mitochondrial DNA variation and cancer. Nat Rev Cancer 2021;21(7):431–45.
CrossRef Google scholar
[22]
BooreJL. Animal mitochondrial genomes. Nucleic Acids Res 1999;27(8):1767–80.
CrossRef Google scholar
[23]
KimKH, SonJM, BenayounBA, et al. The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress. Cell Metab 2018;28(3):516–24.
CrossRef Google scholar
[24]
KimSJ, XiaoJL, WanJX, et al. Mitochondrially derived peptides as novel regulators of metabolism. J Physiol 2017;595(21):6613–21.
CrossRef Google scholar
[25]
FukuiH, MoraesCT. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet 2009;18(6):1028–36.
CrossRef Google scholar
[26]
HungW-Y, WuC-W, YinP-H, et al. Somatic mutations in mitochondrial genome and their potential roles in the progression of human gastric cancer. Biochimica et Biophysica Acta 2010;1800(3):264–70.
CrossRef Google scholar
[27]
VermulstM, Wanagat J, KujothGC, et al. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 2008;40(4):392–4.
CrossRef Google scholar
[28]
PicardM, ZhangJ, HancockS, et al. Progressive increase in mtDNA 3243A > G heteroplasmy causes abrupt transcriptional reprogramming. Proc Natl Acad Sci USA 2014;111(38):E4033–42.
CrossRef Google scholar
[29]
LarssonNG. Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 2010;79:683–706.
CrossRef Google scholar
[30]
BenderA, Krishnan KJ, MorrisCM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006;38(5):515–7.
CrossRef Google scholar
[31]
LiH, ShenL, HuP, et al. Aging–associated mitochondrial DNA mutations alter oxidative phosphorylation machinery and cause mitochondrial dysfunctions. Biochimica et Biophysica Acta 2017;1863(9):2266–73.
CrossRef Google scholar
[32]
KennedySR, SalkJJ, SchmittMW, et al. Ultra–sensitive sequencing reveals an age–related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 2013;9(9):e1003794.
CrossRef Google scholar
[33]
LuoY, MaJ, LuW. The significance of mitochondrial dysfunction in cancer. Int J Mol Sci 2020;21(16):5598.
CrossRef Google scholar
[34]
ArbeithuberB, HesterJ, CremonaMA, et al. Age–related accumulation of de novo mitochondrial mutations in mammalian oocytes and somatic tissues. PLoS Biol 2020;18(7):e3000745.
CrossRef Google scholar
[35]
DrummondMJ, Addison O, BrunkerL, et al. Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: a cross-sectional comparison. J Gerontol 2014;69(8):1040–8.
CrossRef Google scholar
[36]
WangD, Kreutzer DA, EssigmannJM. Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat Res 1998;400(1–2):99–115.
CrossRef Google scholar
[37]
BohrVA. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 2002;32(9):804–12.
CrossRef Google scholar
[38]
NovickRP, ClowesRC, CohenSN, et al. Uniform nomenclature for bacterial plasmids-proposal. Bacteriol Rev 1976;40(1):168–89.
CrossRef Google scholar
[39]
VanderstraetenS, Van den Brule S, HuJP, et al. The role of 3′–5′ exonucleolytic proofreading and mismatch repair in yeast mitochondrial DNA error avoidance. J Biol Chem 1998;273(37):23690–7.
CrossRef Google scholar
[40]
LimSE, Longley MJ, CopelandWC. The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem 1999;274(53):38197–203.
CrossRef Google scholar
[41]
ZhengW, Khrapko K, CollerHA, et al. Origins of human mitochondrial point mutations as DNA polymerase gamma-mediated errors. Mutat Res Fundam Mol Mech Mutagen 2006;599(1-2):11–20.
CrossRef Google scholar
[42]
YasukawaT, KangD. An overview of mammalian mitochondrial DNA replication mechanisms. J Biochem 2018;164(3):183–93.
CrossRef Google scholar
[43]
KujothGC, HionaA, PughTD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005;309(5733):481–4.
CrossRef Google scholar
[44]
KrishnanKJ, ReeveAK, SamuelsDC, et al. What causes mitochondrial DNA deletions in human cells? Nat Genet 2008;40(3):275–9.
CrossRef Google scholar
[45]
DiazF, Bayona-Bafaluy MP, RanaM, et al. Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res 2002;30(21):4626–33.
CrossRef Google scholar
[46]
WilliamsSL, MashDC, ZuchnerS, et al. Somatic mtDNA mutation spectra in the aging human putamen. PLoS Genet 2013;9(12):e1003990.
CrossRef Google scholar
[47]
RubinszteinDC, MarinoG, KroemerG. Autophagy and Aging. Cell 2011, 146(5):682–95.
CrossRef Google scholar
[48]
GelinoS, HansenM. Autophagy—an emerging anti-aging mechanism. J Clin Exp Pathol 2012;Suppl 4:006.
CrossRef Google scholar
[49]
YouleRJ, Narendra DP. Mechanisms of mitophagy. Nat RevMol Cell Biol 2011;12(1):9–14.
CrossRef Google scholar
[50]
NarendraDP, JinSM, TanakaA, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010;8(1):e1000298.
CrossRef Google scholar
[51]
PoulogiannisG, McIntyre RE, DimitriadiM, et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci USA 2010;107(34):15145–50.
CrossRef Google scholar
[52]
YangX, ZhangR, NakahiraK, et al. Mitochondrial DNA mutation, diseases, and nutrient-regulated mitophagy. Annu Rev Nutr 2019;39:201–26.
CrossRef Google scholar
[53]
JiaoH, JiangD, HuX, et al. Mitocytosis, a migrasome–mediated mitochondrial quality–control process. Cell 2021;184(11):2896–910.
CrossRef Google scholar
[54]
ChanDC. Fusion and fission: Interlinked processes critical for mitochondrial health. Annu Rev Genet 2012;46:265–87.
CrossRef Google scholar
[55]
AshrafiG, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 2013;20(1):31–42.
CrossRef Google scholar
[56]
YouleRJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science 2012;337(6098):1062–5.
CrossRef Google scholar
[57]
NakadaK, InoueK, HayashiJ. Interaction theory of mammalian mitochondria. Bioche Biophys Res Commun 2001;288(4):743–6.
CrossRef Google scholar
[58]
GilkersonRW, SchonEA, HernandezE, et al. Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation. J Cell Biol 2008;181(7):1117–28.
CrossRef Google scholar
[59]
StewartJB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy. implications for human health and disease. Nat Rev Genet 2015;16(9):530–42.
CrossRef Google scholar
[60]
YangL, LongQ, LiuJ, et al. Mitochondrial fusion provides an ‘initial metabolic complementation’ controlled by mtDNA. Cell Mol Life Sci 2015;72(13):2585–98.
CrossRef Google scholar
[61]
PicklesS, VigieP, YouleRJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 2018;28(4):R170–85.
CrossRef Google scholar
[62]
TermanA, Gustafsson B, BrunkUT. Autophagy, organelles and ageing. J Pathol 2007;211(2):134–43.
CrossRef Google scholar
[63]
KurzDJ, DecaryS, HongY, et al. Senescence–associated beta–galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 2000;113(20):3613–22.
CrossRef Google scholar
[64]
WongYC, Ysselstein D, KraincD. Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 2018;554(7692):382–6.
CrossRef Google scholar
[65]
SuenDF, Narendra DP, TanakaA, et al. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci USA 2010;107(26):11835–40.
CrossRef Google scholar
[66]
PalikarasK, Lionaki E, TavernarakisN. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 2015;521(7553):525–8.
CrossRef Google scholar
[67]
RanaA, ReraM, WalkerDW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci USA 2013;110(21):8638–43.
CrossRef Google scholar
[68]
RyuD, Mouchiroud L, AndreuxPA, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 2016;22(8):879–88.
CrossRef Google scholar
[69]
RanaA, Oliveira MP, KhamouiAV, et al. Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat Commun 2017;8(1):448.
CrossRef Google scholar
[70]
ParkSJ, ShinJH, KimES, et al. Mitochondrial fragmentation caused by phenanthroline promotes mitophagy. Febs Lett 2012;586(24):4303–10.
CrossRef Google scholar
[71]
YeK, LuJ, MaF, et al. Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. Proc Natl Acad Sci USA 2014;111(29):10654–9.
CrossRef Google scholar
[72]
PayneBAI, WilsonIJ, Yu-Wai-ManP, et al. Universal heteroplasmy of human mitochondrial DNA.Hum Mol Genet 2013;22(2):384–90.
CrossRef Google scholar
[73]
StewartJB, Chinnery PF. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet 2021;22(2):106–18.
CrossRef Google scholar
[74]
LudwigLS, LareauCA, UlirschJC, et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 2019;176(6):1325–39.
CrossRef Google scholar
[75]
XuJ, NunoK, LitzenburgerUM, et al. Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. Elife 2019;8:e45105.
CrossRef Google scholar
[76]
LareauCA, LudwigLS, MuusC, et al. Massively parallel single- cell mitochondrial DNA genotyping and chromatin profiling. Nat Biotechnol 2021;39(4):451–61.
CrossRef Google scholar
[77]
BurgstallerJP, KolbeT, HavlicekV, et al. Large-scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations. Nat Commun 2018;9:12.
CrossRef Google scholar
[78]
PatergnaniS, Morciano G, CarinciM, et al. The „mitochondrial stress responses”. the „Dr. Jekyll and Mr. Hyde” of neuronal disorders. Neural Regener Res 2022;17(12):2563–75.
CrossRef Google scholar
[79]
AshleighT, Swerdlow RH, BealMF. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis. Alzheimer’s Dement J Alzheimer’s Assoc 2022. Published online ahead of print.
CrossRef Google scholar
[80]
OmasanggarR, YuCY, AngGY, et al. Mitochondrial DNA mutations in Malaysian female breast cancer patients. PLoS One 2020;15(5):e0233461.
CrossRef Google scholar
[81]
GasparreG, Porcelli AM, LenazG, et al. Relevance of mitochondrial genetics and metabolism in cancer development. Cold Spring Harbor Perspect Biol 2013;5(2):a011411.
CrossRef Google scholar
[82]
TubbsA, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 2017;168(4):644–56.
CrossRef Google scholar
[83]
GrivennikovSI, GretenFR, KarinM. Immunity, inflammation, and cancer. Cell 2010;140(6):883–99.
CrossRef Google scholar
[84]
FaubertB, Solmonson A, DeBerardinisRJ. Metabolic reprogramming and cancer progression. Science 2020;368(6487):eaaw5473.
CrossRef Google scholar
[85]
WarburgO. Origin of cancer cells. Science 1956;123(3191):309–14.
CrossRef Google scholar
[86]
NouwsJ, Nijtmans LGJ, SmeitinkJA, et al. Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause, pathology and treatment options. Brain 2012;135:12–22.
CrossRef Google scholar
[87]
ParkJS, SharmaLK, LiH, et al. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 2009;18(9):1578–89.
CrossRef Google scholar
[88]
Marco-BruallaJ, Al-Wasaby S, SolerR, et al. Mutations in the ND2 subunit of mitochondrial complex I are sufficient to confer increased tumorigenic and metastatic potential to cancer cells. Cancers 2019;11(7):1027.
CrossRef Google scholar
[89]
DasguptaS, HoqueMO, UpadhyayS, et al. Mitochondrial Cytochrome B gene mutation promotes tumor growth in bladder cancer. Cancer Res 2008;68(3):700–6.
CrossRef Google scholar
[90]
ArnoldRS, SunQ, SunCQ, et al. An inherited heteroplasmic mutation in mitochondrial gene COI in a patient with prostate cancer alters reactive oxygen, reactive nitrogen and proliferation. Biomed Res Int 2013;2013:239257.
CrossRef Google scholar
[91]
PetrosJA, Baumann AK, Ruiz-PesiniE, et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 2005;102(3):719–24.
CrossRef Google scholar
[92]
SmithAL, Whitehall JC, BradshawC, et al. Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis. Nat Cancer 2020, 1(10):976–89.
CrossRef Google scholar
[93]
DikalovS. Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 2011;51(7):1289–301.
CrossRef Google scholar
[94]
HarmanD. The biologic clock: the mitochondria? J Am Geriatr Soc 1972;20(4):145–7.
CrossRef Google scholar
[95]
YeeC, YangW, HekimiS. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 2014;157(4):897–909.
CrossRef Google scholar
[96]
RahaS, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 2000;25(10):502–8.
CrossRef Google scholar
[97]
SziborM, Richter C, GhafourifarP. Redox control of mitochondrial functions. Antioxid Redox Signal 2001;3(3):515–23.
CrossRef Google scholar
[98]
HahnA, ZurynS. Mitochondrial genome (mtDNA) mutations that generate reactive oxygen species. Antioxidants 2019;8(9):392.
CrossRef Google scholar
[99]
GardnerPR, NguyenDDH, WhiteCW. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian-cells and in rat lungs. Proc Natl Acad Sci USA 1994;91(25):12248–52.
CrossRef Google scholar
[100]
LenazG, GenovaML. Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. Am J Physiol Cell Physiol 2007;292(4):C1221–39.
CrossRef Google scholar
[101]
LenazG, GenovaML. Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 2010;12(8):961–1008.
CrossRef Google scholar
[102]
ParadiesG, Petrosillo G, ParadiesV, et al. Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic Biol Med 2010;48(10):1286–95.
CrossRef Google scholar
[103]
SunW, ZhouS, ChangSS, et al. Mitochondrial mutations contribute to HIF1 alpha accumulation via increased reactive oxygen species and up-regulated pyruvate dehydrogenease Kinase 2 in head and neck squamous cell carcinoma. Clin Cancer Res 2009;15(2):476–84.
CrossRef Google scholar
[104]
KimJW, Tchernyshyov I, SemenzaGL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006;3(3):177–85.
CrossRef Google scholar
[105]
VijgJ, SuhY. Genome instability and aging. Annu Rev Physiol 2013;75:645–68.
CrossRef Google scholar
[106]
MaticI. Mutation rate heterogeneity increases odds of survival in unpredictable environments. Mol Cell 2019;75(3):421–5.
CrossRef Google scholar
[107]
WallaceDC. Mitochondrial DNA variation in human radiation and disease. Cell 2015;163(1):33–38.
CrossRef Google scholar
[108]
SrinivasUS, TanBWQ, VellayappanBA, et al. ROS and the DNA damage response in cancer. Redox Biol 2019;25:101084.
CrossRef Google scholar
[109]
CookeMS, EvansMD, DizdarogluM, et al. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 2003;17(10):1195–214.
CrossRef Google scholar
[110]
HuangME, Kolodner RD. A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol Cell 2005;17(5):709–20.
CrossRef Google scholar
[111]
KudryavtsevaAV, Krasnov GS, DmitrievAA, et al. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 2016;7(29):44879–905.
CrossRef Google scholar
[112]
SomyajitK, GuptaR, SedlackovaH, et al. Redox-sensitive alteration of replisome architecture safeguards genome integrity. Science 2017;358(6364):797–802.
CrossRef Google scholar
[113]
GraindorgeD, Martineau S, MachonC, et al. Singlet oxygen-mediated oxidation during UVA radiation alters the dynamic of genomic DNA replication. PLoS One 2015;10(10):e0140645.
CrossRef Google scholar
[114]
DehennautV, LoisonI, DubuissezM, et al. DNA double-strand breaks lead to activation of hypermethylated in cancer 1 (HIC1) by SUMOylation to regulate DNA repair. J Biol Chem 2013;288(15):10254–64.
CrossRef Google scholar
[115]
ReimannM, Loddenkemper C, RudolphC, et al. The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 2007;110(8):2996–3004.
CrossRef Google scholar
[116]
CampisiJ. Cancer and ageing: rival demons? Nat Rev Cancer 2003, 3(5):339–49.
CrossRef Google scholar
[117]
Hazkani-CovoE, ZellerRM, MartinW. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 2010;6(2):e1000834.
CrossRef Google scholar
[118]
JuYS, TubioJMC, MifsudW, et al. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Res 2015;25(6):814–24.
CrossRef Google scholar
[119]
SrinivasainagendraV, Sandel MW, SinghB, et al. Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma. Genome Med 2017;9:15.
CrossRef Google scholar
[120]
WallaceDC, FanW. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 2010;10(1):12–31.
CrossRef Google scholar
[121]
BaiRK, LealSM, CovarrubiasD, et al. Mitochondrial genetic background modifies breast cancer risk. Cancer Res 2007;67(10):4687–94.
CrossRef Google scholar
[122]
BookerLM, Habermacher GM, JessieBC, et al. North American white mitochondrial haplogroups in prostate and renal cancer. J Urol 2006;175(2):468–72.
CrossRef Google scholar
[123]
LeeWT, SunX, TsaiT-S, et al. Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns. Cell Death Discov 2017;3:17062.
CrossRef Google scholar
[124]
KopinskiPK, Janssen KA, SchaeferPM, et al. Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proc Natl Acad Sci USA 2019;116(32):16028–35.
CrossRef Google scholar
[125]
SunX, Johnson J, St JohnJC. Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells. Nucleic Acids Res 2018;46(12):5977–95.
CrossRef Google scholar
[126]
VeatchJR, McMurray MA, NelsonZW, et al. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009;137(7):1247–58.
CrossRef Google scholar
[127]
HamalainenRH, Landoni JC, AhlqvistKJ, et al. Defects in mtDNA replication challenge nuclear genome stability through nucleotide depletion and provide a unifying mechanism for mouse progerias. Nat Metab 2019;1(10):958–65.
CrossRef Google scholar
[128]
KaramanlidisG, LeeCF, Garcia-MenendezL, et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab 2013;18(2):239–50.
CrossRef Google scholar
[129]
MurataMM, KongX, MoncadaE, et al. NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell 2019;30(20):2584–97.
CrossRef Google scholar
[130]
YuLX, LingY, WangHY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2018, 2(1):6.
CrossRef Google scholar
[131]
PicardM, Wallace DC, BurelleY. The rise of mitochondria in medicine. Mitochondrion 2016;30:105–16.
CrossRef Google scholar
[132]
YumS, LiM, FangY, et al. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc Natl Acad Sci USA 2021;118(14):e2100225118.
CrossRef Google scholar
[133]
SunL, WuJ, DuF, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013;339(6121):786–91.
CrossRef Google scholar
[134]
ShimadaK, Crother TR, KarlinJ, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012;36(3):401–14.
CrossRef Google scholar
[135]
HemmiH, Takeuchi O, KawaiT, et al. A toll-like receptor recognizes bacterial DNA. Nature 2000;408(6813):740–5.
CrossRef Google scholar
[136]
DhirA, DhirS, BorowskiLS, et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 2018;560(7717):238–42.
CrossRef Google scholar
[137]
LeeH, Fenster RJ, PinedaSS, et al. Cell type-specific transcriptomics reveals that mutant huntingtin leads to mitochondrial RNA release and neuronal innate immune activation. Neuron 2020;107(5):891–908.
CrossRef Google scholar
[138]
PengHY, LucavsJ, BallardD, et al. Metabolic reprogramming and reactive oxygen species in T cell immunity. Front Immunol 2021;12:652687.
CrossRef Google scholar
[139]
TakeshitaF, LeiferCA, GurselI, et al. Cutting edge: role of toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol 2001;167(7):3555–8.
CrossRef Google scholar
[140]
LatzE, Schoenemeyer A, VisintinA, et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 2004;5(2):190–8.
CrossRef Google scholar
[141]
PerovalMY, BoydAC, YoungJR, et al. A critical role for MAPK signaling pathways in the transcriptional regulation of toll like receptors. PLoS One 2013;8(2):e51243.
CrossRef Google scholar
[142]
DolinaJS, LeeJ, GriswoldRQ, et al. TLR9 sensing of self-DNA controls cell-mediated immunity to Listeria infection via rapid conversion of conventional CD4(+) T cells to T(reg). Cell Rep 2020;31(1):107249.
CrossRef Google scholar
[143]
NishimotoS, FukudaD, SataM. Emerging roles of Toll-like receptor 9 in cardiometabolic disorders. Inflamm Regener 2020;40:18.
CrossRef Google scholar
[144]
Garcia-MartinezI, Santoro N, ChenY, et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Investig 2016;126(3):859–64.
CrossRef Google scholar
[145]
LamLKM, MurphyS, KokkinakiD, et al. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci Transl Med 2021;13(616):eabj1008.
CrossRef Google scholar
[146]
LiuY, YanW, TohmeS, et al. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll-like receptor 9. J Hepatol 2015;63(1):114–21.
CrossRef Google scholar
[147]
GaoC, Kozlowska A, NechaevS, et al. TLR9 signaling in the tumor microenvironment initiates cancer recurrence after radiotherapy. Cancer Res 2013;73(24):7211–21.
CrossRef Google scholar
[148]
KangTH, MaoCP, KimYS, et al. TLR9 acts as a sensor for tumor-released DNA to modulate anti-tumor immunity after chemotherapy. J Immunother Cancer 2019;7(1):260.
CrossRef Google scholar
[149]
ThomasM, Ponce-Aix S, NavarroA, et al. Immunotherapeutic maintenance treatment with toll-like receptor 9 agonist lefitolimod in patients with extensive-stage small-cell lung cancer: results from the exploratory, controlled, randomized, international phase II IMPULSE study. Ann Oncol 2018;29(10):2076–84.
CrossRef Google scholar
[150]
ZhaoH, WuL, YanG, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021;6(1):263.
CrossRef Google scholar
[151]
KartikasariAER, Huertas CS, MitchellA, et al. Tumor-induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front Oncol 2021;11:692142.
CrossRef Google scholar
[152]
HeS, Sharpless NE. Senescence in health and disease. Cell 2017;169(6):1000–11.
CrossRef Google scholar
[153]
DouZ, GhoshK, VizioliMG, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 2017;550(7676):402–6.
CrossRef Google scholar
[154]
YangH, WangH, RenJ, et al. cGAS is essential for cellular senescence. Proc Natl Acad Sci US A 2017;114(23):E4612–20.
CrossRef Google scholar
[155]
GlückS, GueyB, GulenMF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 2017;19(9):1061–70.
CrossRef Google scholar
[156]
ShiJ, ZhaoY, WangK, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015;526(7575):660–5.
CrossRef Google scholar
[157]
Chavarría-SmithJ, VanceRE. The NLRP1 inflammasomes. Immunol Rev 2015;265(1):22–34.
CrossRef Google scholar
[158]
SwansonKV, DengM, TingJP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 2019;19(8):477–89.
CrossRef Google scholar
[159]
ZhaoY, YangJ, ShiJ, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011;477(7366):596–600.
CrossRef Google scholar
[160]
BonarSL, Brydges SD, MuellerJL, et al. Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice. PLoS One 2012;7(4):e35979.
CrossRef Google scholar
[161]
GueyB, BodnarM, ManiéSN, et al. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc Natl Acad Sci USA 2014;111(48):17254–9.
CrossRef Google scholar
[162]
HeY, ZengMY, YangD, et al. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 2016;530(7590):354–7.
CrossRef Google scholar
[163]
ZhangT, ZhaoJ, LiuT, et al. A novel mechanism for NLRP3 inflammasome activation. Metab Open 2022;13:100166.
CrossRef Google scholar
[164]
ZhongZ, LiangS, Sanchez-LopezE, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 2018;560(7717):198–203.
CrossRef Google scholar
[165]
Cataño CañizalesYG, Uresti RiveraEE, García Jacobo RE, et al. Increased levels of AIM2 and circulating mitochondrial DNA in type 2 diabetes. Iran J Immunol 2018;15(2):142–55.
[166]
RehwinkelJ, GackMU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol 2020;20(9):537–51.
CrossRef Google scholar
[167]
JefferiesCA. Regulating IRFs in IFN driven disease. Front Immunol 2019;10:325.
CrossRef Google scholar
[168]
KarikóK, Buckstein M, NiH, WeissmanD. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005;23(2):165–75.
CrossRef Google scholar
[169]
BorowskiLS, Dziembowski A, HejnowiczMS, et al. Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci. Nucleic Acids Res 2013;41(2):1223–40.
CrossRef Google scholar
[170]
Luna-SánchezM, Bianchi P, QuintanaA. Mitochondria-induced immune response as a trigger for neurodegeneration: a pathogen from within. Int J Mol Sci 2021;22(16):8523.
CrossRef Google scholar
[171]
BamborschkeD, Kreutzer M, KoyA, et al. PNPT1 mutations may cause Aicardi-Goutières-Syndrome. Brain Dev 2021;43(2):320–4.
CrossRef Google scholar
[172]
WernerC. A. The older population, 2010. US Department of Commerce, Economics and Statistics Administration, US Census Bureau. 2011.
[173]
SchoenbergMH. Physical activity and nutrition in primary and tertiary prevention of colorectal cancer. Visceral Med 2016;32(3):199–204.
CrossRef Google scholar
[174]
MehrabaniS, Bagherniya M, AskariG, et al. The effect of fasting or calorie restriction on mitophagy induction: a literature review. J Cachexia Sarcopenia Muscle 2020;11(6):1447–58.
CrossRef Google scholar
[175]
ShortKR, Bigelow ML, KahlJ, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 2005;102(15):5618–23.
CrossRef Google scholar
[176]
BroskeyNT, BossA, FaresEJ, et al. Exercise efficiency relates with mitochondrial content and function in older adults. Physiol Rep 2015;3(6):e12418.
CrossRef Google scholar
[177]
SafdarA, LittleJP, StoklAJ, et al. Exercise increases mitochondrial PGC-1 alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem 2018;293(13):4953.
CrossRef Google scholar
[178]
HuertasJR, CasusoRA, AgustinPH, et al. Stay fit, stay young: Mitochondria in movement: the role of exercise in the new mitochondrial paradigm. Oxid Med Cell Longev 2019;2019:18.
CrossRef Google scholar
[179]
BalanE, Schwalm C, NaslainD, et al. Regular endurance exercise promotes fission, mitophagy, and oxidative phosphorylation in human skeletal muscle independently of age. Front Physiol 2019;10:1088.
CrossRef Google scholar
[180]
Lopez-OtinC, BlascoMA, PartridgeL, et al. The hallmarks of aging. Cell 2013;153(6):1194–217.
CrossRef Google scholar
[181]
WuJ, LiXY, ZhuGL, Zhang YX, et al. The role of Resveratrol-induced mitophagy/autophagy in peritoneal mesothelial cells inflammatory injury via NLRP3 inflammasome activation triggered by mitochondrial ROS. Exp Cell Res 2016;341(1):42–53.
CrossRef Google scholar
[182]
MadeoF, Eisenberg T, PietrocolaF, et al. Spermidine in health and disease. Science 2018;359(6374):eaan2788.
CrossRef Google scholar
[183]
FanXY, GuoL, ChenLN, et al. Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nat Biomed Eng 2022;6(4):339–50.
CrossRef Google scholar
[184]
DongLF, Kovarova J, BajzikovaM, et al. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife 2017;6:e22187.
[185]
BajzikovaM, Kovarova J, CoelhoAR, et al. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab 2019;29(2):399–416.
CrossRef Google scholar
[186]
KeeneyPM, Quigley CK, DunhamLD, et al. Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson’s disease cell model. Hum Gene Ther 2009;20(8):897–907.
CrossRef Google scholar
[187]
GammagePA, MoraesCT, MinczukM. Mitochondrial genome engineering: The revolution may not be crispr-lzed. Trends Genet 2018;34(2):101–10.
CrossRef Google scholar
[188]
PeevaV, BleiD, TromblyG, et al. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun 2018;9(1):1727.
CrossRef Google scholar
[189]
GammagePA, Rorbach J, VincentAI, et al. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 2014;6(4):458–66.
CrossRef Google scholar
[190]
BacmanSR, Williams SL, PintoM, et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 2013;19(9):1111–3.
CrossRef Google scholar
[191]
GammagePA, Viscomi C, SimardML, et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med 2018;24(11):1691–5.
CrossRef Google scholar
[192]
BacmanSR, Kauppila JHK, PereiraCV, et al. MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med 2018;24(11):1696–700.
CrossRef Google scholar
[193]
MokBY, de Moraes MH, ZengJ, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020;583(7817):631–7.
CrossRef Google scholar
[194]
Silva-PinheiroP, NashPA, Van HauteL, et al. In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue. Nat Commun 2022;13(1):750.
CrossRef Google scholar
[195]
MokBY, KotrysAV, RaguramA, et al. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat Biotechnol 2022. Published online head of print.
CrossRef Google scholar
[196]
GuoJ, ZhangX, ChenX, et al. Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing. Cell Discov 2021;7(1):78.
CrossRef Google scholar
[197]
LeeH, LeeS, BaekG, et al. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun 2021;12(1):1190.
CrossRef Google scholar
[198]
QiX, ChenX, GuoJ, et al. Precision modeling of mitochondrial disease in rats via DdCBE-mediated mtDNA editing. Cell Discov 2021;7(1):95.
CrossRef Google scholar
[199]
ChenX, LiangD, GuoJ, et al. DdCBE-mediated mitochondrial base editing in human 3PN embryos. Cell Discov 2022;8(1):8.
CrossRef Google scholar
[200]
WeiY, XuC, FengH, et al. Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE. Cell Discov 2022;8(1):7.
CrossRef Google scholar
[201]
WeiY, LiZ, XuK, et al. Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos. Cell Discov 2022;8(1):27.
CrossRef Google scholar
[202]
ChoSI, LeeS, MokYG, et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 2022;185(10):1764–76.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(1319 KB)

Accesses

Citations

Detail

Sections
Recommended

/