Radiomic assessment of the progression of acoustic neuroma after gamma knife stereotactic radiosurgery

Ganesh Narayanasamy , Geoffrey Zhang , Eric Siegel , Graham Campbell , Eduardo G. Moros , Edvaldo P. Galhardo , Steven Morrill , John Day , Jose Penagaricano

Journal of Solid Tumors ›› 2019, Vol. 9 ›› Issue (2) : 1 -5.

PDF (484KB)
Journal of Solid Tumors ›› 2019, Vol. 9 ›› Issue (2) : 1 -5. DOI: 10.5430/jst.v9n2p1
Original Articles
research-article

Radiomic assessment of the progression of acoustic neuroma after gamma knife stereotactic radiosurgery

Author information +
History +
PDF (484KB)

Abstract

Introduction: The aim of this study was to determine whether radiomic features measured at baseline in Magnetic Resonance images (MRI) of acoustic neuromas (AN) can predict Gamma Knife (GK) treatment outcome.
Methods: The study was conducted on pre- and post-GK MRI-T2 scans of 32 patients with AN who underwent stereotactic radiosurgery (SRS) for 12 Gy dose. Radiomic features extracted include Intensity, Fractals, Laplacian of Gaussian and textural Co-Occurrence, Run-length (RL), Size Zone, and Neighborhood Gray-Tone Difference matrices (NGTDM) features. Subjects were classified as treatment failures (TF) if tumor volume increased > 10%. Pre- and post-SRS audiology reports were utilized in hearing evaluation.
Results: Fifteen subjects (47%) qualified as TFs. In univariate receiver operating characteristic (ROC) analysis, two radiomic features, complexity in NGTDM and run percentage in RL, displayed areas under curves of > 0.65.
Conclusion: This initial radiomic study establishes features that illustrates the prognostic ability of the SRS treatment in acoustic neuroma. Hearing preservation was achieved in a majority of acoustic neuroma patients treated in Gamma Knife.

Keywords

Radiomics / SRS Radiomics / Acoustic neuroma / vestibular schwannoma / Gamma Knife

Cite this article

Download citation ▾
Ganesh Narayanasamy, Geoffrey Zhang, Eric Siegel, Graham Campbell, Eduardo G. Moros, Edvaldo P. Galhardo, Steven Morrill, John Day, Jose Penagaricano. Radiomic assessment of the progression of acoustic neuroma after gamma knife stereotactic radiosurgery. Journal of Solid Tumors, 2019, 9(2): 1-5 DOI:10.5430/jst.v9n2p1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stangerup SE, Caye-Thomasen P. Epidemiology and natural his-tory of vestibular schwannomas. Otolaryngol Clin North Am. 2012; 45(2): 257-268. PMid:22483814. https://doi.org/10.1016/j.otc.2011.12.008

[2]

Wiegand DA, Fickel V. Acoustic neuroma-the patient’s perspective: Subjective assessment of symptoms, diagnosis, therapy, and outcome in 541 patients. Laryngoscope. 1989; 99: 179-187. PMid:2913427.

[3]

Noren G, Greitz D, Hirsch A, et al. Gamma knife surgery in acous-tic tumours. Acta Neurochir Suppl (Wien). 1993; 58: 104-107. https://doi.org/10.1007/978-3-7091-9297-9_24

[4]

Andrews DW, Suarez O, Goldman HW, et al. Stereotactic radio-surgery and fractionated stereotactic radiotherapy for the treatment of acoustic schwannomas: comparative observations of 125 pa-tients treated at one institution. Int J Radiat Oncol Biol Phys. 2001; 50(5): 1265-1278. https://doi.org/10.1016/S0360-3016(01)01559-0

[5]

Flickinger JC, Kondziolka D, Pollock BE, et al. Evoluton in tech-nique for vestibular schwannoma radiosurgery and effect on outcome. International Journal of Radiation Oncoilgoy Biology Physics. 1996; 36(2): 275-280.

[6]

Paek SH, Chung HT, Jeong SS, et al. Hearing preservation af-ter gamma knife stereotactic radiosurgery of vestibular schwan-noma. Cancer. 2005; 104(3): 580-590. PMid:15952200. https://doi.org/10.1002/cncr.21190

[7]

WHO (1979) Handbook for Reporting Results of Cancer Treatment Offset Publication No. 48. Geneva:World Health Organization.

[8]

Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Or-ganization for Research and Treatment of Cancer, National Can-cer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000; 92: 205-216. PMid:10655437. https://doi.org/10.1093/jnci/92.3.205

[9]

Blakeley JO, Evans DG, Adler J, et al. Consensus recommenda-tions for current treatments and accelerating clinical trials for pa-tients with neurofibromatosis type 2. American Journal of Medi-cal Genetics Part A. 2012; 158(1): 24-41.PMid:22140088. https://doi.org/10.1002/ajmg.a.34359

[10]

Pollock BE, Driscoll CL, Foote RL, et al. Patient outcomes after vestibular schwannoma management: a prospective comparison of microsurgical resection and stereotactic radiosurgery. Neurosurgery. 2006; 59(1): 77-85. PMid:16823303. https://doi.org/10.1227/01.NEU.0000219217.14930.14

[11]

Timmer FC, Hanssens PE, van Haren AE, et al. Follow-up after gamma knife radiosurgery for vestibular schwannomas. The Laryn-goscope. 2011; 121(7): 1359-1366. https://doi.org/10.1002/lary.21763

[12]

Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour pheno-type by noninvasive imaging using a quantitative radiomics approach. Nature communications. 2014. https://doi.org/10.1038/ncomms5006

[13]

Saadatmand HJ, Cheng-Chia W, Wang TJC. Interdisciplinary man-agement of acoustic neuromas. Appl Rad Oncol. 2016; 5(1): 5-16.

[14]

Shafiq M, Zhang GG, Latifi K, et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med-ical physics. 2017; 44(3): 1050-1062. PMid:28112418. https://doi.org/10.1002/mp.12123

[15]

Kurani AS, Xu DH, Furst J, et al. Co-occurrence matrices for volu-metric data. Heart. 2004; 27: 25.

[16]

Oliver JA, Budzevich M, Zhang GG, et al. Variability of Image Fea-tures Computed from Conventional and Respiratory-Gated PET/CT Images of Lung Cancer. Translational Oncology. 2015; 8: 524-534. PMid:26692535. https://doi.org/10.1016/j.tranon.2015.11.013

[17]

Galloway MM. Texture analysis using gray level run lengths. and Image Processing. Com-puter Graphics 1975; 4: 172-179. https://doi.org/10.1016/S0146-664X(75)80008-6

[18]

Thibault G, Fertil B, Navarro C, et al. Texture indexes and gray level size zone matrix application to cell nuclei classification. 2009.

[19]

Amadasun M, King R. Textural features corresponding to textural properties. IEEE Transactions on System on Man and Cybernetics. 1989; 19: 1264-1274. https://doi.org/10.1109/21.44046

[20]

Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magnetic Resonance Imaging. 2012; 30: 1234-1248. PMid:22898692. https://doi.org/10.1016/j.mri.2012.06.010

[21]

Sarkar N, Chaudhuri BB. An efficient approach to estimate fractal dimension of textural images. Pattern Recognition. 1992; 25: 1035-1041. https://doi.org/10.1016/0031-3203(92)90066-R

[22]

Ganeshan B, Panayiotou E, Burnand K, et al. Tumour heterogene-ity in non-small cell lung carcinoma assessed by CT texture anal-ysis: A potential marker of survival. Eur Radiol. 2012; 22: 796-802. PMid:22086561. https://doi.org/10.1007/s00330-011-2319-8

[23]

Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. Jour-nal of Clinical Epidemiology. 1996; 49(12): 1373-1379. https://doi.org/10.1016/S0895-4356(96)00236-3

[24]

Sweeney AD, Carlson ML, Ehtesham M, et al. Surgical approaches for vestibular schwannoma. Current Otorhinolaryngology Reports. 2014; 2(4): 256-264. https://doi.org/10.1007/s40136-014-0060-y

[25]

Vokurka EA, Herwadkar A, Thacker NA, et al. Using Bayesian tissue classification to improve the accuracy of vestibular schwannoma vol-ume and growth measurement. American Journal of Neuroradiology. 2002; 23(3): 459-467. PMid:11901019.

[26]

Iwai Y, Yamanaka K, Shiotani M, et al. Radiosurgery for acoustic neuromas: results of low-dose treatment. Neurosurgery. 2003; 53: 282-288. PMid:12925242. https://doi.org/10.1227/01.NEU.0000073416.22608.B3

[27]

Pollock BE. Management of vestibular schwannomas that en-large after stereotactic radiosurgery: treatment recommendations based on a 15 year experience. Neurosurgery. 2006; 58: 241-248. PMid:16462477. https://doi.org/10.1227/01.NEU.0000194833.66593.8B

[28]

Bhandare N, Jackson A, Eisbruch A, et al. Radiation therapy and hearing loss. International Journal of Radiation Oncology. Biology, Physics. 2010; 76(3 Suppl): S50-S57. https://doi.org/10.1016/j.ijrobp.2009.04.096

[29]

Hua C, Bass JK, Khan R, et al. Hearing loss after radiotherapy for pediatric brain tumors: effect of cochlear dose. International Journal of Radiation Oncology Biology Physics. 2008; 72(3): 892-899.

[30]

Kano H, Kondziolka D, Khan A, et al. Predictors of hearing preser-vation after stereotactic radiosurgery for acoustic neuroma. Journal of Neurosurgery. 2009; 111(4): 863-873.

AI Summary AI Mindmap
PDF (484KB)

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/