IL-2 induces apoptosis, increases the production and expression of cytochrome-C and inhibits COX IV in cervical cancer cells

Edgar I. Torres-Corioriles , Itzel del Río-Ortiz , Benny Weiss-Steider , Miguel A. Barrios-Maya , Leonardo Trujullo-Cirilo , Teresa Corona-Ortega , Rosalva Rangel-Corona

Journal of Solid Tumors ›› 2019, Vol. 9 ›› Issue (1) : 21 -32.

PDF (1256KB)
Journal of Solid Tumors ›› 2019, Vol. 9 ›› Issue (1) : 21 -32. DOI: 10.5430/jst.v9n1p21
Original Articles
research-article

IL-2 induces apoptosis, increases the production and expression of cytochrome-C and inhibits COX IV in cervical cancer cells

Author information +
History +
PDF (1256KB)

Abstract

It is known that cervical cancer cells express IL-2 receptor (IL-2R) and those high doses induce cell death. To identify the type of cell death two cervical cancer cell lines, CALO and INBL, were cultured with 100 IU/ml of IL-2. Our results showed the presence of apoptotic cell death by the significant expression of phosphatidylserine on the external surface of cellular membranes, the presence of a typical DNA fragmentation and the activation of caspase 3. We also observed that the expression of COX I, COX II and COX III was not significantly altered while that of COX IV was completely inhibited. An increased expression of cytochrome-C by confocal microscopy was observed. Finally, we speculate that the clinical effect and toxicities of IL-2 used in cancer therapies is mostly due to its apoptotic effect on the cancer cells themselves rather than, as thought, the cytotoxic contribution of leukocytes.

Keywords

IL-2 / Cervical cancer / Apoptosis / Cytochrome-C / Mitochondrial / Respiratory chain

Cite this article

Download citation ▾
Edgar I. Torres-Corioriles, Itzel del Río-Ortiz, Benny Weiss-Steider, Miguel A. Barrios-Maya, Leonardo Trujullo-Cirilo, Teresa Corona-Ortega, Rosalva Rangel-Corona. IL-2 induces apoptosis, increases the production and expression of cytochrome-C and inhibits COX IV in cervical cancer cells. Journal of Solid Tumors, 2019, 9(1): 21-32 DOI:10.5430/jst.v9n1p21

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mule J, Shu S, Rosenberg SA. The anti-tumor efficacy of lymphokine- activated killer cells and recombinant interleukin 2 in vivo. J Im-munology. 1985; 135(1): 646-52. https://doi.org/10.4049/jimmunol.1801187

[2]

Rosenberg SA, Lotze MT, Muul LM, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. New England Journal of Medicine. 1987; 316(15): 889-97. https://doi.org/10.1056/NEJM192802231980115

[3]

Muranski P, Boni A, Wrzesinski C, et. al. Increased intensity lym-phodepletion and adoptive immunotherapy-how far can we go? Nat Clin Pract Oncol. 2006; 3(12): 668-81. https://doi.org/10.1038/ncponc1066

[4]

Rangel-Corona R, Corona-Ortega T, Soto-Cruz I, et al. Evidence that cervical cancer cells secrete IL-2, which becomes an autocrine growth factor. Cytokine. 2010; 50(3): 273-7. https://doi.org/10.1016/j.cyto.2010.02.013

[5]

Weiss B, Santiago E, Rangel R, et al. Advances in Cancer Research at UNAM Ed. Programa Uni-versitario de Investigación en Salud, UNAM and El Manual Moderno.Therapeutic Alternatives for Cancer. 2007; 249-268.

[6]

Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4): 495-516. https://doi.org/10.1177/0192623318811592

[7]

Lakhani SA, Masud A, Kuida K, et. al. Caspases 3 and 7: key media-tors of mitochondrial events of apoptosis. 2006; 311(5762): 847-51. https://doi.org/10.1126/science.aav3421

[8]

Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998; 391(6662): 43-50. PMid:9422506. https://doi.org/10.1038/34112

[9]

Tyurina Y, Shvedova A, Kawai K, et al. Phospholipid signaling in apoptosis: peroxidation and externalization of phosphatidylserine. Toxicology. 2000; 148(2): 93-101. https://doi.org/10.1016/j.tox.2018.12.003

[10]

Borutaite V. Mitochondria as decision-makers in cell death. Environ Mol Mutagen. 2010; 51(5): 406-16.

[11]

Huttemann M, Helling S, Sanderson TH, et al. Regulation of mi-tochondrial respiration and apoptosis through cell signaling: cy-tochrome c oxidase and cytochrome c in ischemia/reperfusion in-jury and inflammation. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2012; 1817(4): 598-609.

[12]

Yang M, Chen P, Peng H, et al. Cytochrome C oxidase expression and endothelial cell apoptosis in lungs of patients with chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi. 2010; 33(9):665-9.

[13]

Pramanik KC, Boreddy SR, Srivastava SK. Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PloS one. 2011; 6(5): e20151. https://doi.org/10.1371/journal.pone.0020151

[14]

Zhong Y, Hu Y, Peng W, et al. Age-related decline of the cytochrome c oxidase subunit expression in the auditory cortex of the mimetic aging rat model associated with the common deletion. Hear Res. 2012: 294(1-2): 40-8. https://doi.org/10.1016/j.heares.2016.10.030

[15]

Zhang JW, Zhang SS, Song JR, et al. Autophagy inhibition switches low-dose camptothecin-induced premature senescence to apoptosis in human colorectal cancer cells. Biochem Pharmacol. 2014; 90(3):265-75. https://doi.org/10.4172/2167-0501.1000225

[16]

Levy RJ, Vijayasarathy C, Raj NR, et al. Competitive and noncompet-itive inhibition of myocardial cytochrome C oxidase in sepsis. Shock. 2004; 21(2): 110-4. https://doi.org/10.1056/NEJMra1208943

[17]

Schull S, Gunther SD, Brodesser S, et al. Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ce-ramide synthase 6. Cell Death Dis. 2015; 6(3): e1691. https://doi.org/10.1038/cddis.2015.62

[18]

Caceres-Cortes JR, Alvarado-Moreno JA, Waga K, et al. Implication of tyrosine kinase receptor and steel factor in cell density-dependent growth in cervical cancers and leukemias. Cancer Research. 2001; 61(16): 6281-9. https://doi.org/10.1080/10611860903012810

[19]

Waldmann TA. Cytokines in Cancer Immunotherapy. Cold Spring Harb Perspect Biol. 2018; 3- 10(12). pii: a028472. https://doi.org/10.1101/cshperspect.a028472

[20]

Kondapaneni M, McGregor JR, Salvemini D, et al. Inducible Ni-tric Oxide Synthase (iNOS) is Not Required for IL-2-induced Hy-potension and Vascular Leak Syndrome in Mice. J Immunother. 2008; 31(4): 325-33. https://doi.org/10.1097/CJI.0b013e31816112e8

[21]

Boyman O, Kolios AG, Raeber ME.Modulation of T cell responses by IL-2 and IL-2 complexes. Clin Exp Rheumatol. 2015; 33(4 s 92): S54-7. https://doi.org/10.3899/jrheum.180550

[22]

Ridolfi R, Chiarion-Sileni V, Guida M, et al. Cisplatin, dacarbazine with or without subcutaneous interleukin-2, and interferon alpha-2b in advanced melanoma outpatients: results from an Italian multicen-ter phase III randomized clinical trial. J Clin Oncol. 2002 15; 20(6): 1600-7.

[23]

Abbate I, Correale M, Musci MD, et al. Modification of soluble immunological parameters during treatment with interleukin-2. Int J Biol Markers. 1993; 8(4): 227-32. https://doi.org/10.1177/1724600818799876

[24]

Marciscano AE, Madan RA. Targeting the Tumor Microenvironment with Immunotherapy for Genitourinary Malignancies. Curr Treat Options Oncol. 2018 8; 19(3): 16. https://doi.org/10.1007/s11864-018-0523-3

[25]

Khong B, Lawson BO, Ma J, et al. Rigor prophylaxis in stage IV melanoma and renal cell carcinoma patients treated with high dose IL-2. BMC Cancer. 2018; 18(1): 1007.

[26]

Rangel-Corona R, Corona-Ortega T, del Rio-Ortiz I, et al. Cationic liposomes bearing IL-2 on their external surface induced mice leuko-cytes to kill human cervical cancer cells in vitro, and significantly reduced tumor burden in immunodepressed mice. J Drug Target. 2011; 19(2): 79-85. https://doi.org/10.3109/10611861003733920

[27]

Corona-Ortega T, Rangel-Corona R, Hernandez-Jimenez M, et al. Characterization of cationic liposomes having IL-2 expressed on their external surface, and their affinity to cervical cancer cells ex-pressing the IL-2 receptor. J Drug Target. 2009; 17(7): 496-501. https://doi.org/10.1080/10611860903012810

[28]

Li Y, Park JS, Deng JH, et al. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr. 2006; 38(5-6): 283-91. https://doi.org/10.1007/s10863-018-9775-7

[29]

Brown GC, Borutaite V. Regulation of apoptosis by the redox state of cytochrome c. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2008; 1777(7): 877-81. PMid:18439415. https://doi.org/10.1016/j.bbabio.2008.03.024

[30]

Mendez DL, Akey IV, Akey CW, et al. Oxidized or Reduced Cy-tochrome c and Axial Ligand Variants All Form the Apoptosome in vitro. Biochemistry. 2017; 56(22): 2766-2769. https://doi.org/10.1021/acs.biochem.7b00309

[31]

Stonans I, Stonane E, Russwurm S, et al. Hep G 2 human hepatoma cells express multiple cytokine genes. Cytokine. 1999; 11(2): 151-6. https://doi.org/10.1097/AIA.0b013e318034194e

AI Summary AI Mindmap
PDF (1256KB)

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/