A health disparities study of MicroRNA-146a expression in prostate cancer samples derived from African American and European American patients

Monet Stevenson , Hirendra Nath Banerjee , Narendra Banerjee , Kuldeep Rawat , Lin Chen , Myla Worthington , Sasha Hodge , Rayshawn Walker , Mukesh Verma , Fazlul Sarkar , Santosh Mandal

Journal of Solid Tumors ›› 2020, Vol. 10 ›› Issue (2) : 1 -6.

PDF (274KB)
Journal of Solid Tumors ›› 2020, Vol. 10 ›› Issue (2) : 1 -6. DOI: 10.5430/jst.v10n2p1
ORIGINAL ARTICLE
research-article

A health disparities study of MicroRNA-146a expression in prostate cancer samples derived from African American and European American patients

Author information +
History +
PDF (274KB)

Abstract

Considering the prevalence of prostate cancer all over the world, it is desired to have tools, technologies, and biomarkers which help in early detection of the disease and discriminate different races and ethnic groups. Genetic information from the single gene analysis and genome-wide association studies have identified few biomarkers, however, the drivers of prostate cancer remain unknown in the majority of prostate cancer patients. In those cases where genetic association has been identified, the genes confer only a modest risk of this cancer, hence, making them less relevant for risk counseling and disease management. There is a need for additional biomarkers for diagnosis and prognosis of prostate cancer. MicroRNAs are a class of non-protein coding RNA molecules that are frequently dysregulated in different cancers including prostate cancer and show promise as diagnostic biomarkers and targets for therapy. Here we describe the role of micro RNA 146a (miR-146a) which may serve as a diagnostic and prognostic marker for prostate cancer, as indicated from the data presented in this report. Also, a pilot study indicated differential expression of miR-146a in prostate cancer cell lines and tissues from different racial groups. Reduced expression of miR-146a was observed in African American tumor tissues compared to those from European Whites This report provides a novel insight into understanding the prostate carcinogenesis.

Keywords

Biomarker / MicroRNA / Noncoding RNA / Prostate cancer

Cite this article

Download citation ▾
Monet Stevenson, Hirendra Nath Banerjee, Narendra Banerjee, Kuldeep Rawat, Lin Chen, Myla Worthington, Sasha Hodge, Rayshawn Walker, Mukesh Verma, Fazlul Sarkar, Santosh Mandal. A health disparities study of MicroRNA-146a expression in prostate cancer samples derived from African American and European American patients. Journal of Solid Tumors, 2020, 10(2): 1-6 DOI:10.5430/jst.v10n2p1

登录浏览全文

4963

注册一个新账户 忘记密码

Conflicts of Interest Disclosure
The authors declare no conflict of interest.

References

[1]

Chiam K, Ricciardelli C, Bianco-Miotto T. Epigenetic biomarkers in prostate cancer: Current and future uses, Cancer letters. 2014; 342(2): 248-56. PMid:22391123. https://doi.org/10.1016/j. canlet.2012.02.011

[2]

Verma M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncol. 2016; 12(13): 1645-64. PMid:27079684. https://doi.org/10.2217/ fon-2015-0035

[3]

Blute ML, Damaschke NA, Jarrard DF. The epigenetics of prostate cancer diagnosis and prognosis: update on clinical applications. Curr Opin Urol. 2015; 25(1): 83-8. PMid:25405932. https://doi.or g/10.1097/MOU. 0000000000000132

[4]

Brothman AR, Swanson G, Maxwell TM, et al. Global hypomethylation is common in prostate cancer cells: a quantitative predictor for clinical outcome? Cancer Genet Cytogenet. 2005; 156(1): 31-6. PMid:15588853. https://doi.org/10.1016/j.cancergencyt o.2004.04.004

[5]

Mishra A, Verma M. Epigenetics of solid cancer stem cells. Methods Mol Biol. 2012; 86: 315-31. PMid:22359285. https://doi.org/ 10.1007/978-1-61779-612-8_2

[6]

Sethi S, Kong D, Land S, et al. Comprehensive molecular oncogenomic profiling and miRNA analysis of prostate cancer. Am J Transl Res. 2013; 5(2): 200-11. https://doi.org/10. 1158/1538-744 5.AM2012-4599

[7]

Severi G, Southey MC, English DR, et al. Epigenome-wide methylation in DNA from peripheral blood as a marker of risk for breast cancer. Breast Cancer Res Treat. 2014; 148(3): 665-73. PMid:25407397. https://doi.org/10.1007/s10549-014-3209-y

[8]

Shen J, LeFave C, Sirosh I, et al. Integrative epigenomic and genomic filtering for methylation markers in hepatocellular carcinomas. BMC Med Genomics. 2015; 8: 28. PMid:26059414. https: //doi.org/10.1186/s12920-015-0105-1

[9]

Smolle M, Uranitsch S, Gerger A, et al. Current status of long noncoding RNAs in human cancer with specific focus on colorectal cancer. Int J Mol Sci. 2014; 15(8): 13993-4013. PMid:25119862. https://doi.org/10.3390/ijms150813993

[10]

Czajka AA, Wojcicka A, Kubiak A, et al. Family of microRNA 146 Regulates RARbeta in Papillary Thyroid Carcinoma. PLoS One. 2016; 11(3): e0151968. PMid:27011326. https://doi.org/10.1 371/journal.pone. 0151968

[11]

Li H, Xie S, Liu M, et al. The clinical significance of downregulation of mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p in gastric cancer tumorigenesis. Int J Oncol. 2014; 45(1): 197-208. PMid:24805774. https://doi.org/10.3892/ijo.2014.2415

[12]

Koppers-Lalic D, Hackenberg M, de Menezes R, et al. Bijnsdorp, Noninvasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget. 2016; 7(16): 22566-78. PMid:26992225. https://doi.org/10.18632/oncot arget. 8124

[13]

Kristensen H, Thomsen AR, Haldrup C, et al. Novel diagnostic and prognostic classifiers for prostate cancer identified by genomewide microRNA profiling. Oncotarget. 2016; 7(21): 30760-71. PMid:27120795. https://doi.org/10.18632/oncotarget. 89 53

[14]

Crea F, Venalainen E, Ci X, et al. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics. 2016; 8(5): 721-31. PMid:27096814. https://doi.org/ 10.2217/epi.16.6

[15]

Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015; 17(6): 816-26. PMid:25985394. https://doi.org/10. 1038/ncb3169

[16]

Banerjee HN, Boston A, Barfield A, et al. A Study of The Effects of Novel Rhenium Compounds on Pancreatic and Prostate Cancer Cell Lines. Int J Sci Res (Ahmedabad). 2016; 5(7).

[17]

Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012; 125(Pt 23): 5591-6. PMid:23420197. https://doi.org/10.1242/jcs. 116392

[18]

Xu W, Liu LZ, Loizidou M, et al. The role of nitric oxide in cancer. Cell Res. 2002; 12(5-6): 311-20. PMid:12528889. https: //doi.org/10.1038/sj.cr. 7290133

[19]

Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004; 75(6): 639-53. PMid:15172174. https://doi.or g/10.1016/j.lfs.2003.10.042

[20]

Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function, Eur Heart J. 2012; 33(7): 829-37. PMid:21890489. https://doi.org/10.1093/eurheartj/ehr304

[21]

Le X, Wei D, Huang S, et al. Nitric oxide synthase II suppresses the growth and metastasis of human cancer regardless of its upregulation of protumor factors. Proc Natl Acad Sci USA. 2005; 102(24): 8758-63. PMid:15939886. https://doi.org/10.1073/ pnas. 0409581102

[22]

Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004; 104(8): 2224-34. PMid:15231578. https://doi.org/10.1182/blood-2004-03-1109

[23]

Ye Y, Li SL, Ma YY, et al. Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget. 2017; 8(55): 94834-94849. PMid:29212270. https://doi.org/10.18632/oncotarget. 22014

[24]

Wotschofsky Z, Gummlich L, Liep J, et al. Integrated microRNA and mRNA Signature Associated with the Transition from the Locally Confined to the Metastasized Clear Cell Renal Cell Carcinoma Exemplified by miR-146-5p. PLoS One. 2016; 11(2): e0148746. PMid:26859141. https://doi.org/10.1371/journal.pone. 0 148746

[25]

Li Z, Ma YY, Wang J, et al. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther. 2016; 9: 139-48. PMid:26770063. https://doi.org/10.2147/OTT.S955 65

[26]

Garcia AI, Buisson M, Bertrand P, et al. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011; 3(5): 279-90. PMid:21472990. https://doi.org/10.1002/emmm. 201100136

[27]

Sun Q, Zhao X, Liu X, et al. miR-146a functions as a tumor suppressor in prostate cancer by targeting Rac1. Prostate. 2014; 74(16): 161321. PMid:25214035. https://doi.org/10.1002/pros. 22878

[28]

Coulter JA, Page NL, Worthington J, et al. Transcriptional regulation of inducible nitric oxide synthase gene therapy: targeting early stage and advanced prostate cancer. J Gene Med. 2010; 12(9): 755-65. PMid:20821746. https://doi.org/10.1002/jgm. 1495

[29]

Samuels TL, Yan J, Khampang P, et al. Association of microRNA 146 with middle ear hyperplasia in pediatric otitis media. Int J Pediatr Otorhinolaryngol. 2016; 88: 104-8. PMid:27497395. https: //doi.org/10.1016/j.ijporl.2016.06.056

[30]

Todorova K, Metodiev MV, Metodieva G, et al. Micro-RNA-204 Participates in TMPRSS2/ERG Regulation and Androgen Receptor Reprogramming in Prostate Cancer. Horm Cancer. 2017; 8(1): 28-48.

[31]

Ahadi A, Khoury S, Losseva M, et al. A comparative analysis of IncRNAs in prostate cancer exosomes and their parental cell lines. Genom Data. 2016; 9: 7-9. PMid:27330995. https://doi.org/ 10.1016/j.gdata.2016.05.010

[32]

Perske C, Lahat N, Sheffy LS, et al. Loss of inducible nitric oxide synthase expression in the mouse renal cell carcinoma cell line RENCA is mediated by microRNA miR-146a. Am J Pathol. 2010; 177(4): 2046-54. PMid:20709800. https://doi.org/10.2353/ ajpath.2010.091111

AI Summary AI Mindmap
PDF (274KB)

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/