Immune checkpoint inhibitors for the treatment of glioblastoma: Where we are

Bryan Lu , Senxi Du , Xiao-Tang Kong

Journal of Solid Tumors ›› 2020, Vol. 10 ›› Issue (1) : 7 -13.

PDF (413KB)
Journal of Solid Tumors ›› 2020, Vol. 10 ›› Issue (1) : 7 -13. DOI: 10.5430/jst.v10n1p7
Reviews
research-article

Immune checkpoint inhibitors for the treatment of glioblastoma: Where we are

Author information +
History +
PDF (413KB)

Abstract

Despite a history of frequent challenges and roadblocks, there has been recent excitement in the treatment of human cancer, specifically regarding the remarkable efficacy of various immune checkpoint inhibitors including programmed cell death protein 1 (PD-1), programmed cell death ligand 1 (PD-L1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockers in treating metastatic melanoma, non-small cell lung cancer, and other malignant growths. However, treatment of glioblastoma multiforme (GBM) with immune checkpoint inhibitors so far has not been shown to be as successful in several randomized clinical trials as in other cancer with the exception of one pilot study that found promising results by neoadjuvant administration of Pembrolizimab for the treatment of recurrent GBM. Our article will review the current status of immune checkpoint inhibitors for the treatment of GBM.

Keywords

Glioblastoma / Glioblastoma multiforme / GBM / Immune checkpoint inhibitors / immunotherapy / programmed cell death protein 1 (PD-1) / Programmed cell death ligand 1 (PD-L1) / cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)

Cite this article

Download citation ▾
Bryan Lu, Senxi Du, Xiao-Tang Kong. Immune checkpoint inhibitors for the treatment of glioblastoma: Where we are. Journal of Solid Tumors, 2020, 10(1): 7-13 DOI:10.5430/jst.v10n1p7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mesfin FB, Al-Dhahir MA. Cancer, Brain Gliomas. Treasure Island, FL: StatPearls Publishing. 2019.

[2]

Stupp R, Wong ET, Kanner AA, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: A ran-domised phase III trial of a novel treatment modality. European Jour-nal of Cancer. 2012; 48(14), 2192-2202. PMid:22608262. https://doi.org/10.1016/j.ejca.2012.04.011

[3]

Stupp R, Weller M, Belanger K, et al. Radiotherapy plus Con-comitant and Adjuvant Temozolomide for Glioblastoma. The New England Journal of Medicine. 2005; 10. PMid:15758009.https://doi.org/10.1056/NEJMoa043330

[4]

Narita Y. Bevacizumab for glioblastoma. Therapeutics and Clinical Risk Management. 2015; 1759. PMid:26664126. https://doi.org/10.2147/TCRM.S58289

[5]

Kamran N, Kadiyala P, Saxena M, et al. Immunosuppressive Myeloid Cells’ Blockade in the Glioma Microenvironment Enhances the Ef-ficacy of Immune-Stimulatory Gene Therapy. Molecular Therapy. 2017; 25(1): 232-248. PMid:28129117. https://doi.org/10.1016/j.ymthe.2016.10.003

[6]

Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. New England Journal of Medicine. 2017; 377(14): 1345-1356. PMid:28889792. https://doi.org/10.1056/NEJMoa1709684

[7]

Herzberg B, Campo MJ, Gainor JF. Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. Oncologist. 2017; 22(1): 81-88. https://doi.org/10.1634/theoncologist.2016-0189.

[8]

Karachaliou N, Cao MG, Teixidó C, et al. Understanding the function and dysfunction of the immune system in lung cancer: The role of immune checkpoints. 2015; 12(2): 8. https://doi.org/10.7497/j.issn.2095-3941.2015.0029

[9]

Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipili-mumab in Advanced Melanoma. New England Journal of Medicine. 2015; 372(26): 2521-2532. PMid:25891173. https://doi.org/10.1056/NEJMoa1503093

[10]

Carter T, Shaw H, Cohn-Brown D, et al. Ipilimumab and Beva-cizumab in Glioblastoma. Clinical Oncology. 2016; 28(10): 622-626. PMid:27169593. https://doi.org/10.1016/j.clon.2016.04.042

[11]

Huang J, Liu F, Liu Z, et al. Immune Checkpoint in Glioblastoma: Promising and Challenging. Frontiers in Pharmacology. 2017; 8: 242. PMid:28536525. https://doi.org/10.3389/fphar.2017.00242

[12]

Dai B, Qi N, Li J, et al. Temozolomide combined with PD-1 An-tibody therapy for mouse orthotopic glioma model. Biochemical and Biophysical Research Communications. 2018; 501(4): 871-876. PMid:29758196. https://doi.org/10.1016/j.bbrc.2018.05.064

[13]

Speranza MC, Passaro C, Ricklefs F, et al. Preclinical investigation of combined gene-mediated cytotoxic immunotherapy and immune checkpoint blockade in glioblastoma. Neuro-Oncology. 2018; 20(2):225-235. PMid:29016938. https://doi.org/10.1093/neuonc/nox139

[14]

Blumenthal DT, Yalon M, Vainer GW, et al. Pembrolizumab: First ex-perience with recurrent primary central nervous system (CNS) tumors. Journal of Neuro-Oncology. 2016; 129(3), 453-460. PMid:27377654. https://doi.org/10.1007/s11060-016-2190-1

[15]

Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Na-ture Medicine. 2019; 25(3): 477-486. PMid:30742122. https://doi.org/10.1038/s41591-018-0337-7

[16]

Wainwright DA, Chang AL, Dey M, et al. Durable Therapeutic Effi-cacy Utilizing Combinatorial Blockade against IDO, CTLA-4, and PD-L1 in Mice with Brain Tumors. Clinical Cancer Research. 2014; 20(20): 5290-5301. PMid:24691018. https://doi.org/10.1158/1078-0432.CCR-14-0514

[17]

Heynckes S, Daka K, Franco P, et al. Crosslink between Temo-zolomide and PD-L 1 immune-checkpoint inhibition in glioblas-toma multiforme. BMC Cancer. 2019; 19(1): 117. PMid:30709339. https://doi.org/10.1186/s12885-019-5308-y

[18]

Saha D, Martuza RL, Rabkin SD. Macrophage Polarization Con-tributes to Glioblastoma Eradication by Combination Immunovi-rotherapy and Immune Checkpoint Blockade. Cancer Cell. 2017; 32(2): 253-267.e5. PMid:28810147. https://doi.org/10.1016/j.ccell.2017.07.006

[19]

Chen RQ, Liu F, Qiu XY, et al. The Prognostic and Therapeutic Value of PD-L 1 in Glioma. Frontiers in Pharmacology. 2019; 9: 1503. PMid:30687086. https://doi.org/10.3389/fphar.2018.01503

[20]

Wang Z, Zhang C, Liu X, et al. Molecular and clinical character-ization of PD-L 1 expression at transcriptional level via 976 sam-ples of brain glioma. OncoImmunology. 2016; 5(11): e1196310. PMid:27999734. https://doi.org/10.1080/2162402X.2016.1196310

[21]

Reardon DA, Kaley TJ, Dietrich J, et al. Phase II study to evaluate safety and efficacy of MEDI 4736 (durvalumab) + radiotherapy in pa-tients with newly diagnosed unmethylated MGMT glioblastoma (new unmeth GBM). Journal of Clinical Oncology. 2019; 37(15_suppl): 2032-2032. https://doi.org/10.1200/JCO.2019.37.15_suppl.2032

[22]

Lukas RV, Rodon J, Becker K, et al. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. Journal of Neuro-Oncology. 2018; 140(2), 317-328. PMid:30073642. https://doi.org/10.1007/s11060-018-2955-9

[23]

Leach DR, Krummel MF, Allison JP. Enhancement of Antitumor Immunity by CTLA-4 Blockade. Science. 1996; 271(5256): 1734-1736. PMid:8596936. https://doi.org/10.1126/science.271.5256.1734

[24]

Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 Path-way from Discovery to Clinical Implementation. Frontiers in Im-munology. 2016; 7. https://doi.org/10.3389/fimmu.2016.00550

[25]

Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. European Journal of Cancer. 2016; 54: 139-148. PMid:26765102 https://doi.org/10.1016/j.ejca.2015.11.016

[26]

Antonia S, Goldberg SB, Balmanoukian A, et al. Safety and antitu-mour activity of durvalumab plus tremelimumab in non-small cell lung cancer: A multicentre, phase 1b study. The Lancet Oncology. 2016; 17(3): 299-308. https://doi.org/10.1016/S1470-2045(15)00544-6

[27]

Shih K, Arkenau HT, Infante JR. Clinical impact of checkpoint in-hibitors as novel cancer therapies. Drugs. 2014; 74(17):1993-2013. https://doi.org/10.1007/s40265-014-0305-6

[28]

Jacobs JFM, Idema AJ, Bol KF, et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malig-nant human brain tumors. Neuro-Oncology. 2009; 11(4): 394-402. PMid:19028999. https://doi.org/10.1215/15228517-2008-104

[29]

Filley AC, Henriquez M, Dey M. Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget. 2017; 8(53): 91779-91794. Published 2017 Oct 6. https://doi.org/10.18632/oncotarget.21586

AI Summary AI Mindmap
PDF (413KB)

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/