Prognostic value of VEGFR2 immunoexpression in glioblastoma

Gemma Issus , Sergi Mojal , Joan Gibert , Pilar Navarro , Montserrat Arumi-Uria , Dolores Naranjo-Hans , Beatriz Bellosillo , Maria Martínez-Garcia , Francesc Alameda

Journal of Solid Tumors ›› 2020, Vol. 10 ›› Issue (1) : 1 -6.

PDF (340KB)
Journal of Solid Tumors ›› 2020, Vol. 10 ›› Issue (1) : 1 -6. DOI: 10.5430/jst.v10n1p1
Original Articles
research-article

Prognostic value of VEGFR2 immunoexpression in glioblastoma

Author information +
History +
PDF (340KB)

Abstract

Glioblastoma is the most frequent and aggressive primary tumor of the central nervous system. Prognosis is poor, with a median survival of 15 months after diagnosis. Various tumor biomarkers show prognostic value for glioblastomas, including VEGFR2, which is a receptor of VEGF related to the growth of the blood vessel network. VEGFR2 expression associates with poor prognosis in some tumors. Here we studied the prognostic value of the VEGFR2 immunohistochemical expression in glioblastoma. We used tissue microarrays to analyze 45 surgically excised samples from glioblastomas. Clinical data (age, sex, and Karnofsky Performance Status [KPS]) and morphological data (tumor necrosis, palisading, and vascular thrombosis) were collected. We performed a molecular study of MGMT and IDH1 expression (which are potential prognostic factors for glioblastomas) and an immunohistochemical study of VEGFR2 expression. Our results indicate that age, KPS, tumor necrosis, vascular thrombosis, treatment (STUPP versus other), and VEGFR2 immunoreactivity were related to prognosis (p <.005). In a multivariate analysis, only age > 65 years (Hazard Ratio (HR) (95% CI): 4.9 (2.1-11.4), p <.01), and VEGFR2 immunoexpression (HR (95% CI): 2.8 (1.3-6.1), p =.008), were found to have a statistically significant relation to prognosis. We conclude that immunohistochemical evaluation of VEGFR2 provides added prognostic value to the study of glioblastoma.

Keywords

Glioblastoma / VEGFR2 / IDH1 / MGMT / Prognosis

Cite this article

Download citation ▾
Gemma Issus, Sergi Mojal, Joan Gibert, Pilar Navarro, Montserrat Arumi-Uria, Dolores Naranjo-Hans, Beatriz Bellosillo, Maria Martínez-Garcia, Francesc Alameda. Prognostic value of VEGFR2 immunoexpression in glioblastoma. Journal of Solid Tumors, 2020, 10(1): 1-6 DOI:10.5430/jst.v10n1p1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WHO classification of Tumors of the Central Nervous System. IARC. 4th ed revised. Lyon, 2016.

[2]

Yan H, Parsons DW, Jin G, et al. IDH1 and IDH 2 mutations in gliomas. N Eng J Med. 2009; 360 (8): 765-73. https://doi.org/10.1016/S0513-5117(09)79085-4

[3]

Du R, Petritsch C, Lu K, et al. Metalloproteinase 2 regulates vas-cular patterning and growth affecting tumor cell survival and inva-sion in GBM. Neuro Oncol. 2008; 10(3): 254-64. PMid:18359864. https://doi.org/10.1215/15228517-2008-001

[4]

Brat D. JGlioblastoma: biology, genetics, and behavior. American Society of Clinical Oncology Educational Book / ASCO. American Society of Clinical Oncology. Meeting, 102-7. 2012

[5]

Zagzag D, Lukyanov Y, Lan L, et al. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest. 2006; 86 (12): 1221-1232. PMid:17075581. https://doi.org/10.1038/labinvest.3700482

[6]

Zhang L, He L, Lugano R, et al. IDH mutation status is associ-ated with distinct vascular gene expression signature in low grade gliomas. Neuro Oncol. 2018; 20(11): 1505-16. PMid:29846705. https://doi.org/10.1093/neuonc/noy088

[7]

Conroy S, Wagemakers M, Watenkamp AM, et al.Novel Insight into vascularization patterns and angiogenic facors in GB sub-classes. J. Neurooncol. 2017; 131 (1): 11-20. PMid:27633774. https://doi.org/10.1007/s11060-016-2269-8

[8]

Mahase S, Ratteni RN, Wesseling P, et al. Hypoxia mediated mecha-nisms associated with angiogénesis treatment resistance in glioblas-tomas. Am J Pathol. 2017; 187 (5): 940-953. PMid:28284719. https://doi.org/10.1016/j.ajpath.2017.01.010

[9]

Paolicchi E, Gemigrani F, Krstic-Demonacos M, et al. Targeting hypoxic response for cancer therapy. Oncotarget 2016; 7(12): 13464-13478. PMid:26859576. https://doi.org/10.18632/oncotarget.7229

[10]

Xu C, Wu X, Zhu J.VEGF promotes proliferation of human glioblas-toma multiforme stem-like cells through VEGF receptor 2. Scientific World Journal. 2013, 417413. PMid:23533349. https://doi.org/10.1155/2013/417413

[11]

Knizetova P, Ehrmann J, Hlobilkova A, et al. Autocrine regulation of gliobñastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 ( KDR ) interplay. Cell Cycle. 2008; 7(16), 2553-2561. PMid:18719373. https://doi.org/10.4161/cc.7.16.6442

[12]

Kuczynsky EA, Patten SG, Coomber BL. VEGFR2 expression and TGF-Beta signaling and recurrent high-grade human glioma. Oncol-ogy. 2011; 81(2): 126-34. PMid:21985798. https://doi.org/10.1159/000332849

[13]

Yao X, Ping Y, Liu Y, et al. Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2) Plays a Key Role in Vasculo-genic Mimicry Formation, Neovascularization and Tumor Initi-ation by Glioma Stem-like Cells. PLoS ONE. 2013; 8(3): 1-12. https://doi.org/10.1371/annotation/aed5b555-b826-4591-8aa6-284ad888627d

[14]

Fomby P, Cherlin AJ. NIH Public Access. 2011; 72(2): 181-204. PMid:21918579. https://doi.org/10.1177/000312240707200203

[15]

Homma T, Fukushima T, Vaccarella S, et al. Correlation among pathology, genotype and patient outcome in glioblastomas. J Neu-ropathol Exp Neurol. 2006; 65(9): 846-54. PMid:16957578. https://doi.org/10.1097/01.jnen.0000235118.75182.94

[16]

Keunen O, Johansson M, Oudin A, et al. Anti-VEGF treatment re-duces blood supply and increases tumor cell invasion in glioblastoma. Proc Nat Acad Sci USA. 2011; 108(9): 3749-3754. PMid:21321221. https://doi.org/10.1073/pnas.1014480108

[17]

Lu KV, Chang JP, Parachoniak CA, et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET-VEGFR2 com-plex. Cancer Cell. 2012; 22(1): 21-35. PMid:22789536. https://doi.org/10.1016/j.ccr.2012.05.037

[18]

Esteller M, Hamilton SR, Burger PC, et al. Inactivation of DNA repair gene =5-methilguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999; 59(4): 793-7.

[19]

Stupp R, Mason WP, van der Bent MJ, et al. Radiotherapy plus con-comitant and adjuvant temozolamide for glioblastoma. N Eng J Med. 2005; 352: 987-996. PMid:15758009. https://doi.org/10.1056/NEJMoa043330

AI Summary AI Mindmap
PDF (340KB)

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/