Programmable array antenna based on nematic liquid crystals for the Ka-band

Qiang WANG, Junchen KE, Lin BAI

Journal of Southeast University (English Edition) ›› 2025, Vol. 41 ›› Issue (1) : 78-83.

PDF(3154 KB)
PDF(3154 KB)
Journal of Southeast University (English Edition) ›› 2025, Vol. 41 ›› Issue (1) : 78-83. DOI: 10.3969/j.issn.1003-7985.2025.01.010
Mathematics, Physics, Mechanics

Programmable array antenna based on nematic liquid crystals for the Ka-band

Author information +
History +

Abstract

A programmable low-profile array antenna based on nematic liquid crystals (NLCs) is proposed. Each antenna unit comprises a square patch radiating structure and a tunable NLC-based phase shifter capable of achieving a phase shift exceeding 360° with high linearity. First, the above 64 antenna units are periodically arranged into an 8 × 8 NLC-based antenna array, and the bias voltage of the NLC-based phase shifter loaded on the antenna unit is adjusted through the control of the field-programmable gate array (FPGA) programming sequences. This configuration enables precise phase changes for all 64 channels. Numerical simulation, sample processing, and experimental measurements of the antenna array are conducted to validate the performance of the antenna. The numerical and experimental results demonstrate that the proposed antenna performs well within the frequency range of 19.5-20.5 GHz, with a 3 dB relative bandwidth of 10% and a maximum main lobe gain of 14.1 dBi. A maximum scanning angle of ±34° is achieved through the adjustment of the FPGA programming sequence. This NLC-based programmable array antenna shows promising potential for applications in satellite communication.

Keywords

array antenna / nematic liquid crystals / electronically beam scanning / field programmable gate array (FPGA)

Cite this article

Download citation ▾
Qiang WANG, Junchen KE, Lin BAI. Programmable array antenna based on nematic liquid crystals for the Ka-band. Journal of Southeast University (English Edition), 2025, 41(1): 78‒83 https://doi.org/10.3969/j.issn.1003-7985.2025.01.010

References

[1]
WU B, WU L, ZOU C R. Adaptive modulation in MIMO optical wireless communication systems[J]. Journal of Southeast University (English Edition), 2015, 31(2): 175-180.
[2]
MIRANDA F A, SUBRAMANYAM G, VAN KEULS F W, et al. Design and development of ferroelectric tunable microwave components for Ku- and K-band satellite communication systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(7): 1181-1189.
[3]
YANG L L, QIN T, TU Y, et al. Simulation study on retinal imaging display based on meta-surface micro-nano structures[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(4): 990-996. (in Chinese)
[4]
GU Y Q, CAO W Z, YUAN S F, et al. Inverse finite element method based shape reconstruction for spaceborne antenna structures under thermal load[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(4): 997-1004. (in Chinese)
[5]
SHAO X X, HE X Y, ZHANG J L. Multi-scale two-dimensional digital image correlation system and its application[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(2): 242-246. (in Chinese)
[6]
VALANARASI A, DHANASEKARAN R. Optimum band ε shaped miniature implantable antennas for telemetry applications[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 55-63.
[7]
ZHANG H, CHEN L Q, YANG B, et al. Secure lightweight data using scheme in 5G industrial Internet systems[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(3): 772-780. (in Chinese)
[8]
WANG C X, YOU X H, GAO X Q, et al. On the road to 6G: Visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys and Tutorials, 2023, 25(2): 905-974.
[9]
HUFF G H, BERNHARD J T. Integration of packaged RF MEMS switches with radiation pattern reconfigurable square spiral microstrip antennas[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(2): 464-469.
[10]
RAJAGOPALAN H, RAHMAT-SAMII Y, IMBRIALE W A. RF MEMS actuated reconfigurable reflectarray patch-slot element[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(12): 3689-3699.
[11]
ZHANG X G, JIANG W X, TIAN H W, et al. Pattern-reconfigurable planar array antenna characterized by digital coding method[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1170-1175.
[12]
CHANG L, LI Y, ZHANG Z J, et al. Reconfigurable 2-bit fixed-frequency beam steering array based on microstrip line[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(2): 683-691.
[13]
ZHANG X G, YU Q, JIANG W X, et al. Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382.
[14]
BAI L, ZHANG X G, WANG Q, et al. Dual-band reconfigurable metasurface-assisted Fabry-Pérot antenna with high-gain radiation and low scattering[J]. IET Microwaves, Antennas & Propagation, 2020, 14(15): 1933-1942.
[15]
JING H Y, TANG M R, HAN Y D, et al. Magnetic and microwave absorbing properties of M-type bariumferrite/graphene oxide composite microwave absorber[J]. Journal of Southeast University (English Edition), 2015, 31(4): 511-515.
[16]
WANG Q, ZHANG X G, TIAN H W, et al. Millimeter-wave digital coding metasurfaces based on nematic liquid crystals[J]. Advanced Theory and Simulations, 2019, 2(12): 1900141.
[17]
LIU H W, CHEN Q C, SUN M Q, et al. Photoinduced dynamically tunable terahertz metamaterial absorber[J]. Journal of Southeast University (English Edition), 2024, 40(2): 148-154.
[18]
WANG Q, JIANG W X, SHEN H Y. Design of low-profile array antenna working at 110 GHz based on digital coding characterization[J]. Science China Information Sciences, 2021, 64(10): 209303.
[19]
KOMAR A, PANIAGUA-DOMÍNGUEZ R, MIROSHNICHENKO A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742-1748.
[20]
MIAO P, WANG Z G. 10 Gbit/s PRBS tester implemented in FPGA[J]. Journal of Southeast University (English Edition), 2007, 23 (4): 516-519.
[21]
LI X Y, WAN Y L, LIU J, et al. Broadband electronically scanned reflectarray antenna with liquid crystals[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(3): 396-400.
[22]
LI X Y, JIANG D, LIU J, et al. A Ka-band multilayer beaming-scanning antenna using liquid crystals[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(1): 44-48.
[23]
LI J X, JIN T, ERNI D, et al. Design and numerical demonstration of a 2D millimeter-wave beam-scanning reflectarray based on liquid crystals and a static driving technique[J]. Journal of Physics D: Applied Physics, 2019, 52(27): 275103.
Funding
The National Natural Science Foundation of China(62401168); The National Natural Science Foundation of China(62401139); The National Natural Science Foundation of China(62401170); China Postdoctoral Science Foundation(2023MD744197); Postdoctoral Fellowship Program of CPSF(GZC20230631); Project for Enhancing Young and Middle-aged Teacher’s Research Basis Ability in Colleges of Guangxi(2023KY0218); Guangxi Key Laboratory Foundation of Optoelectronic Information Processing(GD23102)
PDF(3154 KB)

Accesses

Citations

Detail

Sections
Recommended

/