Parametric analysis of the nonlinear primary resonance of spatial cable suspension bridges

Hui Yi1, Xu Liang2

PDF(4293 KB)
PDF(4293 KB)
Journal of Southeast University (English Edition) ›› 2024, Vol. 40 ›› Issue (2) : 165-175. DOI: 10.3969/j.issn.1003-7985.2024.02.007

Parametric analysis of the nonlinear primary resonance of spatial cable suspension bridges

  • Hui Yi1, Xu Liang2
Author information +
History +

Abstract

A comprehensive model based on continuum theory is adopted to conduct the parametric analysis of the primary resonance of the nonlinear vibration of spatial cable suspension bridges. This model can simultaneously account for the geometric nonlinearity of both the vertical motion of the deck and the vertical-horizontal motion of the cable. Based on this model and the multiple scale method(MSM), the modulation equations of the primary resonance responses are derived for spatial cable suspension bridges. Nonlinear coefficients in the modulation equations are determined to have notable influences on the maximum response amplitude of the primary resonance of the system and the hardening or softening characteristics of the investigated vibration mode. Meanwhile, system parameters, such as the inclination angles of the main cable and hanger, the sag-to-span ratio of the cable, and the tensile stiffness ratio between the deck and cable, can notably influence the nonlinear coefficient. The dynamic properties of the system can change dramatically in the form of sudden changes in the nonlinear coefficient of the symmetric vibration of the deck and cable if the parameter is located near the singularity, which should be avoided in the design of the system. This study can provide reference for the design of the bridge structure.

Keywords

suspension bridge / spatial cable / nonlinear dynamics / multiple scale method / primary resonance

Cite this article

Download citation ▾
Hui Yi, Xu Liang. Parametric analysis of the nonlinear primary resonance of spatial cable suspension bridges. Journal of Southeast University (English Edition), 2024, 40(2): 165‒175 https://doi.org/10.3969/j.issn.1003-7985.2024.02.007

References

[1] Dallard P, Fitzpatrick T, Flint A, et al.London millennium bridge: Pedestrian-induced lateral vibration[J].Journal of Bridge Engineering, 2001, 6(6): 412-417. DOI: 10.1061/(asce)1084-0702(2001)6: 6(412).
[2] Lang T Y, Wang H, Jia H Z, et al.Vortex-induced vibration performance and wind pressure distribution of main girder of long-span suspension bridge affected by temporary facilities[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(5): 833-840. DOI:10.3969/j.issn.1001-0505.2022.05.002. (in Chinese)
[3] Tao T Y, Gao W J, Jiang Z X, et al.Analysis on wind-induced vibration and its influential factors of long suspenders in the wake of bridge tower[J].Journal of Southeast University(Natural Science Edition), 2023, 53(6): 1065-1071. DOI:10.3969/j.issn.1001-0505.2023.06.013. (in Chinese)
[4] Li Y, Yang X P, Chen Y M.Dynamic behavior analysis method for vehicle-bridge system considering abrupt cable-breakage events[J].Journal of Southeast University(Natural Science Edition), 2023, 53(6): 1156-1164. DOI:10.3969/j.issn.1001-0505.2023.06.023. (in Chinese)
[5] Abdel-Ghaffar A M, Rubin L I. Nonlinear free vibrations of suspension bridges: Theory[J].Journal of Engineering Mechanics, 1983, 109(1): 313-329. DOI: 10.1061/(asce)0733-9399(1983)109: 1(313).
[6] Abdel-Ghaffar A M, Rubin L I. Nonlinear free vibrations of suspension bridges: Application[J].Journal of Engineering Mechanics, 1983, 109(1): 330-345. DOI: 10.1061/(asce)0733-9399(1983)109: 1(330).
[7] Çevik M, Pakdemirli M.Non-linear vibrations of suspension bridges with external excitation[J].International Journal of Non-linear Mechanics, 2005, 40(6): 901-923. DOI: 10.1016/j.ijnonlinmec.2004.11.002.
[8] Lazer A C, McKenna P J. Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis[J].SIAM Review, 1990, 32(4): 537-578. DOI: 10.1137/1032120.
[9] Ardito R, Capsoni A, Guerrieri A.Internal parametric resonance and aeroelastic effects for long-span suspension bridges[C]//Proceedings of the 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering(COMPDYN 2015). Crete Island, Greece, 2015: 4508-4527.
[10] Capsoni A, Ardito R, Guerrieri A.Stability of dynamic response of suspension bridges[J].Journal of Sound and Vibration, 2017, 393: 285-307. DOI: 10.1016/j.jsv.2017.01.009.
[11] Lepidi M, Gattulli V.Non-linear interactions in the flexible multi-body dynamics of cable-supported bridge cross-sections[J].International Journal of Non-linear Mechanics, 2016, 80: 14-28. DOI: 10.1016/j.ijnonlinmec.2015.09.009.
[12] Peng J, Xiang M J, Wang L H, et al.Nonlinear primary resonance in vibration control of cable-stayed beam with time delay feedback[J].Mechanical Systems and Signal Processing, 2020, 137: 106488. DOI: 10.1016/j.ymssp.2019.106488.
[13] Zhang H Y, Chen Z Q, Hua X G, et al.Design and dynamic characterization of a large-scale eddy current damper with enhanced performance for vibration control[J].Mechanical Systems and Signal Processing, 2020, 145: 106879. DOI: 10.1016/j.ymssp.2020.106879.
[14] Hui Y, Kang H J, Law S S, et al.Modeling and nonlinear dynamic analysis of cable-supported bridge with inclined main cables[J].Engineering Structures, 2018, 156: 351-362. DOI: 10.1016/j.engstruct.2017.11.040.
[15] Hui Y, Xia C, Li K, et al.Modal characteristic and nonlinear dynamic response of suspension bridge with lateral asymmetric stiffness[J].International Journal of Structural Stability and Dynamics, 2023, 23(10): 2350110. DOI: 10.1142/s0219455423501109.
[16] Xu L, Hui Y, Yang Q S, et al.Modeling and modal analysis of suspension bridge based on continual formula method[J].Mechanical Systems and Signal Processing, 2022, 162: 107855. DOI: 10.1016/j.ymssp.2021.107855.
[17] Xu L, Hui Y, Zhu W D, et al.Three-to-one internal resonance analysis for a suspension bridge with spatial cable through a continuum model[J].European Journal of Mechanics—A, 2021, 90: 104354. DOI: 10.1016/j.euromechsol.2021.104354.
[18] Hui Y, Xu L, Jiang Y.Nonlinear torsional primary resonance analysis of suspension bridge with generalized configuration using mathematical model[J].Engineering Structures, 2022, 255: 113935. DOI: 10.1016/j.engstruct.2022.113935.
[19] Xu L, Hui Y, Liu G, et al.Internal resonance of generalized suspension bridge model considering torsional-vertical vibration[J].Structures, 2023, 47: 1754-1776. DOI: 10.1016/j.istruc.2022.11.131.
[20] Cao L L, Lü Y B, Cao D, et al.Influence analysis of pedestrian dynamic parameters on human-induced vibration of long span simply supported footbridge[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(2): 260-266. DOI:10.3969/j.issn.1001-0505.2020.02.008. (in Chinese)
[21] Rega G, Lacarbonara W, Nayfeh A H, et al.Multiple resonances in suspended cables: Direct versus reduced-order models[J].International Journal of Non-linear Mechanics, 1999, 34(5): 901-924. DOI: 10.1016/s0020-7462(98)00065-1.
[22] Nayfeh A H, Mook D T.Nonlinear oscillations[M]. Weinheim, German: John Wiley & Sons, 2008: 127-128.
[23] Cheng P, Kang H J.Modeling and analysis of 1∶3 internal resonance of suspension bridge under boundary excitations[J]. International Journal of Structural Stability and Dynamics, 2024: 2550005. DOI: 10.1142/s0219455425500051.
[24] Nayfeh A H, Balachandran B.Applied nonlinear dynamics: Analytical, computational, and experimental methods[M]. New York: Wiley, 1995: 432-434.
[25] Xu L, Hui Y, Li K.Non-linear dynamic analysis on a continuum suspension bridge model with spatial layout of main cables[J].International Journal of Structural Stability and Dynamics, 2022, 22(7): 2250041. DOI: 10.1142/s0219455422500419.
[26] Lacarbonara W, Paolone A, Vestroni F.Non-linear modal properties of non-shallow cables[J].International Journal of Non-linear Mechanics, 2007, 42(3): 542-554. DOI: 10.1016/j.ijnonlinmec.2007.02.013.
PDF(4293 KB)

Accesses

Citations

Detail

Sections
Recommended

/