PDF(5725 KB)
Photoinduced dynamically tunable terahertz metamaterial absorber
- Liu Hongwei1, Chen Qingchao1, Sun Meiqi1, Lü Junpeng2
Author information
+
1 School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 School of Physics, Southeast University, Nanjing 211189, China
Show less
History
+
Received |
Revised |
Published |
04 Jan 2024 |
26 Mar 2024 |
01 Jun 2024 |
Issue Date |
|
09 Jul 2024 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] Federici J F, Schulkin B, Huang F, et al.THz imaging and sensing for security applications—Explosives, weapons and drugs[J]. Semiconductor Science and Technology, 2005, 20(7): S266-S280. DOI: 10.1088/0268-1242/20/7/018.
[2] Jepsen P U, Cooke D G, Koch M.Terahertz spectroscopy and imaging—Modern techniques and applications[J].Laser & Photonics Reviews, 2011, 5(1): 124-166. DOI: 10.1002/lpor.201000011.
[3] Liu X W, Liu H J, Sun Q B, et al.Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive silicon[J].Applied Optics, 2015, 54(11): 3478-3483. DOI: 10.1364/AO.54.003478.
[4] Zhao L.Investigations on RF transceivers and related integrated circuits for a new generation broadband wireless internet[D]. Nanjing: Southeast University, 2018.(in Chinese)
[5] Landy N I, Sajuyigbe S, Mock J J, et al.Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. DOI: 10.1103/PhysRevLett.100.207402.
[6] Wen Q Y, Zhang H W, Xie Y S, et al.Dual band terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Applied Physics Letters, 2009, 95(24): 241111. DOI: 10.1063/1.3276072.
[7] Liu J J, Hong Z.Mechanically tunable dual frequency THz metamaterial filter[J]. Optics Communications, 2018, 426: 598-601. DOI: 10.1016/j.optcom.2018.06.019.
[8] Keshavarz A, Zakery A.A novel terahertz semiconductor metamaterial for slow light device and dual-band modulator applications[J]. Plasmonics, 2018, 13(2): 459-466. DOI: 10.1007/s11468-017-0531-3.
[9] Ji H Y, Zhang B, Wang G C, et al.Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure[J].Optics Communications, 2018, 412: 37-40. DOI: 10.1016/j.optcom.2017.11.080.
[10] Faruk A, Sabah C.Absorber and sensor applications of complimentary H-shaped fishnet metamaterial for sub-terahertz frequency region[J].Optik, 2019, 177: 64-70. DOI: 10.1016/j.ijleo.2018.09.145.
[11] Yin S, Zhu J F, Xu W D, et al.High-performance terahertz wave absorbers made of silicon-based metamaterials[J].Applied Physics Letters, 2015, 107(7): 073903. DOI: 10.1063/1.4929151.
[12] Song Z Y, Chen A P, Zhang J H.Terahertz switching between broadband absorption and narrowband absorption[J].Optics Express, 2020, 28(2): 2037-2044. DOI: 10.1364/OE.376085.
[13] Zhao Y, Huang Q P, Cai H L, et al.A broadband and switchable VO2-based perfect absorber at the THz frequency[J].Optics Communications, 2018, 426: 443-449. DOI: 10.1016/j.optcom.2018.05.085.
[14] Xu Z H, Wu D, Liu Y M, et al.Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons[J].Nanoscale Research Letters, 2018, 13(1): 143. DOI: 10.1186/s11671-018-2552-z.
[15] Shrekenhamer D, Chen W C, Padilla W J.Liquid crystal tunable metamaterial absorber[J]. Physical Review Letters, 2013, 110(17): 177403. DOI: 10.1103/physrevlett.110.177403.
[16] Li D M, Yuan S, Yang R C, et al.Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 2020, 40(8): 0816001. DOI:10.3788/AOS202040.0816001. (in Chinese)
[17] Cheng Y Z, Gong R Z, Cheng Z Z.A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves[J]. Optics Communications, 2016, 361: 41-46. DOI: 10.1016/j.optcom.2015.10.031.
[18] Yuan C, Zhao X L, Cao X L, et al.Optical control of terahertz nested split-ring resonators[J].Optical Engineering, 2013, 52(8): 087111. DOI: 10.1117/1.OE.52.8.087111.
[19] Yuan S, Yang R C, Xu J P, et al.Photoexcited switchable single-/dual-band terahertz metamaterial absorber[J].Materials Research Express, 2019, 6(7): 075807. DOI: 10.1088/2053-1591/ab1962.
[20] Zhao X G, Fan K B, Zhang J D, et al.Optically tunable metamaterial perfect absorber on highly flexible substrate[J].Sensors and Actuators A: Physical, 2015, 231: 74-80. DOI: 10.1016/j.sna.2015.02.040.
[21] Pu Y Q, Shen H C, Tang F H, et al.Design of millimeter-wave reflective attenuators with capacitive compensation technique[J].Journal of Southeast University(English Edition), 2023, 39(2): 153-160. DOI: 10.3969/j.issn.1003-7985.2023.02.006.
[22] Xu O, Yang F, Sun Z L.Genetic algorithm design and measurement of sub-millimeter wave diagonal horn[J].Journal of Southeast University (Natural Science Edition), 2010, 40(6): 1134-1139. DOI:10.3969/j.issn.1001-0505.2010.06.002. (in Chinese)
[23] Liu J X, Zhang K L, Liu X K, et al.Switchable metamaterial for enhancing and localizing electromagnetic field at terahertz band[J].Optics Express, 2017, 25(13): 13944. DOI: 10.1364/oe.25.013944.
[24] Shen X P, Cui T J.Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber[J].Journal of Optics, 2012, 14(11): 114012. DOI: 10.1088/2040-8978/14/11/114012.
[25] Yao G, Ling F R, Yue J, et al.Dual-band tunable perfect metamaterial absorber in the THz range[J].Optics Express, 2016, 24(2): 1518. DOI: 10.1364/oe.24.001518.