Evolution of East Asian subtropical evergreen broad-leaved forests: When and how?

Hong-Hu Meng , Yi-Gang Song , Guo-Xiong Hu , Pei-Han Huang , Min Li , Ou-Yan Fang , Ren-Ping Su , Guan-Long Cao , Xiang Cai , Shi-Shun Zhou , Yun-Hong Tan , Xiao-Guo Xiang , Wei Wang , Zhe-Kun Zhou , Jie Li

Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (5) : 1045 -1060.

PDF
Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (5) : 1045 -1060. DOI: 10.1111/jse.70001
Review

Evolution of East Asian subtropical evergreen broad-leaved forests: When and how?

Author information +
History +
PDF

Abstract

Understanding how East Asian subtropical evergreen broad-leaved forests (EBLFs) have evolved over time is not only vital for biodiversity conservation but also facilitates predictive modeling of ecosystem services under global change scenarios. During recent decades, numerous studies have been devoted to investigating the evolution of EBLFs. However, there are often contradictory interpretations of the different taxa associated with different geological events and environmental backgrounds. Here, we synthesize several key aspects of the spatiotemporal evolution of EBLFs. First, the EBLFs emerged concomitantly with the development of Asian monsoon systems, occurring no earlier than the Eocene. While the southernmost region was inhabited by tropical elements, EBLFs are not the direct relic of boreotropical flora because of the presence of a broad arid belt at that time. Rather, they represent a unique assemblage including boreotropical relics, tropical floras and deciduous broad-leaved forests. Second, the evolution of EBLFs should not be contextualized within an enclave, the adjacent vegetation systems to elucidate the potential connections between EBLFs and other biomes should be considered to avoid an isolated phenomenon. Third, the adaptive response of EBLFs to environmental changes caused by anthropogenic disturbance in subtropical regions remains understudied. Such a knowledge gap must be addressed to develop effective conservation strategies to sustain the ecosystem amid the dual pressure of climate change and human activity in the future. Finally, current research has predominantly focused on the dominant tree species in EBLFs, whereas comprehensive understanding requires expanding the investigation of associated flora, including understory trees and herbaceous plants. This review not only consolidates contemporary perspectives on the evolution of EBLFs but also proposes a framework to navigate the Anthropocene challenges. By bridging historical patterns with future projections, we aim to catalyze transformative research on EBLFs’ resilience and sustainable management, fostering further research and development regarding the resurgence.

Keywords

biodiversity conservation / Cenozoic / East Asian monsoon / evergreen broad-leaved forests / evolution / geographic distribution

Cite this article

Download citation ▾
Hong-Hu Meng, Yi-Gang Song, Guo-Xiong Hu, Pei-Han Huang, Min Li, Ou-Yan Fang, Ren-Ping Su, Guan-Long Cao, Xiang Cai, Shi-Shun Zhou, Yun-Hong Tan, Xiao-Guo Xiang, Wei Wang, Zhe-Kun Zhou, Jie Li. Evolution of East Asian subtropical evergreen broad-leaved forests: When and how?. Journal of Systematics and Evolution, 2025, 63(5): 1045-1060 DOI:10.1111/jse.70001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aiba S, Hill DA, Agetsuma N. 2001. Comparison between old-growth stands and secondary stands regenerating after clear-felling in warm-temperate forests of Yakushima, southern Japan. Forest Ecology and Management 140: 163-175.

[2]

Ali A, Yan ER, Chen HY, Zhao YT, Yang XD, Xu MS. 2016. Relative contribution of stand characteristics on carbon stocks in subtropical secondary forests in Eastern China. Biogeosciences 13: 4627-4635.

[3]

An ZS, Kutzbach JE, Prell WL, Poter SC. 2001. Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since late Miocene times. Nature 411: 62-66.

[4]

Axelrod DI, Al-Shehbaz I, Raven PH. 1996. History of the modern flora of China. In: Zhang AL, Wu SG, eds. Floristic characteristics and diversity of East Asian plants. Beijing: China Higher Education Press; New York: Springer Press. 43-55.

[5]

Alexander JM, Chalmandrier L, Lenoir J, Bergess T, Essl F, Haider S, Kueffer C, Mcdougall KL, Milbau A, Nunez MA, Pauchard A, Rabitsch W, Rew LJ, Sanders NJ, Pellissier L. 2018. Lags in the response of mountain plant communities to climate change. Global Change Biology 24: 563-579.

[6]

Azuma H, García-Franco JG, Rico-Gray V, Thien LB. 2001. Molecular phylogeny of the Magnoliaceae: The biogeography of tropical and temperate disjunctions. American Journal Botany 88: 2275-2285.

[7]

Ballarin F, Li SQ. 2018. Diversification in tropics and subtropics following the mid-Miocene climate change: A case study of the spider genus Nesticell. Global Change Biology 24: e577-e591.

[8]

Biswas SR, Mallik AU. 2010. Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology 91: 28-35.

[9]

Box EO. 1995. Climatic relations of East and Southeast Asia. In: Box EO, Peet RK, Masuzawa T, Yamada I, Fujiwara K, Maycock PF, eds. Vegetation science in forestry. Global perspective based on forest ecosystems of East and Southeast Asia. Papers from four symposia from the International Congress of Ecology, Yokohama 1990. Dordrecht: Kluwer Academic Publishers. 23: 55.

[10]

Bruelheide B, Hobhnke M, Both S, Fang T, Assmann T, Baruffol M, Bauhus J, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Fischer M, Geissler C, Guo D, Guo LD, Haerdtle W, He JS, Hector A, Kroeber W, Kuehn P, Lang AC, Nadrowski K, Pei K, Scherer-Lorenzen M, Shi X, Scholten T, Schuldt A, Trogisch S, von, Oheimb G, Welk E, Wirth C, Wu YT, Yang XF, Zeng XQ, Zhang SR, Zhou HZ, Ma KP, Schmid B. 2011. Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs 81: 25-41.

[11]

Chen XH, Xiang KL, Lian L, Peng HW, Erst A, Xiang XG, Chen ZD, Wang W. 2020. Biogeographic diversification of Mahonia (Berberidaceae): Implications for the origin and evolution of East Asian subtropical evergreen broadleaved forests. Molecular Phylogenetics and Evolution 151: 106910.

[12]

Chen Z, Zhou Z, Guo ZM, van DT, Sun H, Niu Y. 2023. Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia (Orobanchaceae). Plant Diversity 45: 501-512.

[13]

Cheuk ML, Fischer GA. 2021. The impact of climate change on the distribution of Castanopsis (Fagaceae) species in south China and Indo-China region. Global Ecology and Conservation 26: e01388.

[14]

Dasmann RF. 1972. Towards a system for classifying natural regions of the world and their representation by national parks and reserves. Biological Conservation 4: 247-255.

[15]

Deb JC, Phinn S, Butt N, Mcalpine C. 2018. Identifying risks for tropical Asia climate change impacts on tropical forests. Journal of Tropical Forest Science 30: 182-194.

[16]

Deng M, Jiang XL, Hipp AL, Manos PS, Hahn M. 2018. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Molecular Phylogenetics and Evolution 119: 170-181.

[17]

Deng WYD, Su T, Wappler T, Liu J, Li SF, Huang J, Tang H, Low SL, Wang TX, Xu H, Xu XT, Liu P, Zhou ZK. 2020. Sharp changes in plant diversity and plant-herbivore interactions during the Eocene-Oligocene transition on the southeastern Qinghai-Tibetan Plateau. Global Planet Change 194: 103293.

[18]

Dillon ME, Wang G, Huey RB. 2010. Global metabolic impacts of recent climate warming. Nature 467: 704-706.

[19]

Diamond JM. 1975. The Island Dilemma: Lessons of modern biogeographic studies for the design of nature reserves. Biological Conservation 7: 129-146.

[20]

Dong F, Kuo HC, Chen GL, Wu F, Shan PF, Wang J, Chen D, Lei FM, Hung CM, Yang L, Yang XJ. 2021. Population genomic, climatic and anthropogenic evidence suggest the role of human forces in endangerment of green peafowl (Pavo muticus). Proceedings of the Royal Society B: Biological Sciences 288: 20210073.

[21]

Ehlers J, Gibbard PL. 2007. The extent and chronology of Cenozoic global glaciation. Quaternary International 164-165: 6-20.

[22]

Fan DM, Lei SQ, Liang H, Yao Q, Kou YX, Cheng SM, Yang Y, Qiu YX, Zhang ZY. 2022. More opportunities more species: Pleistocene differentiation and northward expansion of an evergreen broad-leaved tree species Machilus thunbergii (Lauraceae) in Southeast China. BMC Plant Biology 22: 35.

[23]

Fang JY. 2001. Re-discussion about the forest vegetation zonation in Eastern China. Acta Botanica Sinca 43: 522-533.

[24]

Fang JY, Ohsawa M, Kira T. 1996. Vertical vegetation zones along 30° N in humid East Asia. Vegetation 126: 135-149.

[25]

Fang JY, Song YC, Liu HY, Piao SL. 2002. Vegetation-climate relationship and its application in the division of vegetation zone in China. Acta Botanica Sinca 44: 1105-1122.

[26]

Fang JY, Yoda K. 1989. Climate and vegetation in China II. Distribution of main vegetation types and thermal climate. Ecological Research 4: 71-83.

[27]

Fang XM, Yan MD, Zhang WL, Nie JS, Han WX, Wu FL, Song CH, Zhang T, Zan JB, Yang YP. 2021. Paleogeography control of Indian Monsoon intensification and expansion at 41 Ma. Science Bulletin 66: 2320-2328.

[28]

Feng G, Svenning JC, Mi XC, Jia Q, Rao MD, Ren HB, Bebber DP, Ma KP. 2014. Anthropogenic disturbance shapes phylogenetic and functional tree community structure in a subtropical forest. Forest Ecology and Management 313: 188-198.

[29]

Fu JZ, Wen LY. 2023. Impacts of Quaternary glaciation, geological history and geography on animal species history in continental East Asia: A phylogeographic review. Molecular Ecology 32: 4497-4514.

[30]

Gao XY, Meng HH, Zhang ML. 2014. Diversification and vicariance of desert plants: Evidence inferred from chloroplast DNA sequence variation of Lagochilus ilicifolius (Lamiaceae). Biochemical Systematics and Ecology 55: 93-100.

[31]

Geng FD, Lei MF, Zhang NY, Fu YL, Ye H, Dang M, Zhang XD, Liu MQ, Li MD, Liu ZL, Zhao P. 2024. Demographical complexity within walnut species provides insights into the heterogeneity of geological and climatic fluctuations in East Asia. Journal of Systematics and Evolution 62: 1037-1053.

[32]

Gourbet L, Leloup PH, Paquette JL, Philippe S, Gweltaz M, Wang GC, Xu YD, Cao K, Pierre-Olivier A, Inès E, Liu W, Lu HJ, Anne R, Marie-Luce C, Zhang KX, Wu J, Shen TY. 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics 700-701: 162-179.

[33]

Groves CR, Game ET, Anderson MG, Molly C, Carolyn E, Zach F, Evan G, Anne G, Kimberly RH, Jonathan H, Rob M, Ken P, Steve S, Sarah LS. 2012. Incorporating climate change into systematic conservation planning. Biodiversity and Conservation 21: 1651-1671.

[34]

Guo ZT, Ruddiman WF, Hao QZ, Wu HB, Qiao YS, Zhu RX, Peng SZ, Wei JJ, Yuan BY, Liu TS. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416: 159-163.

[35]

Gutaker RM, Groen SC, Bellis ES, Choi JY, Pires IS, Bocinsky RK, Slayton ER, Wilkins O, Castillo CC, Negrao S, Oliveira M, Fuller DQ, Guedes JD, Lasky JR, Purugganan MD. 2020. Genomic history and ecology of the geographic spread of rice. Nature Plants 6: 492-502.

[36]

Hai LS, Li XQ, Zhang JB, Xiang XG, Li RQ, Jabbour F, Ortiz RC, Lu AM, Chen ZD, Wang W. 2022. Assembly dynamics of East Asian subtropical evergreen broadleaved forests: New insights from the dominant Fagaceae trees. Journal of Integrative Plant Biology 64: 2126-2134.

[37]

Hämet-Ahti L, Ahti T, Koponen T. 1974. A scheme of vegetation zones for Japan and adjacent regions. Annales Botanici Fennici 11: 59-88.

[38]

Han EK, Tamaki I, Oh SH, Park JS, Cho WB, Jin DP, Kim BY, Yang SY, Son DC, Choi HJ, Amarsanaa G, Isagi Y, Lee JH. 2023. Genetic and demographic signatures accompanying the evolution of the selfing syndrome in Daphne kiusiana, an evergreen shrub. Annals of Botany 131: 751-767.

[39]

Hansen J, Sato M, Russell G. 2013. Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society of London. Series A Mathematical and Physical Science 371: 20120294.

[40]

Harrison SP, Yu G, Takahara H, Prentice L. 2001. Diversity of temperate plants in East Asia. Nature 413: 129-130.

[41]

Hermsen EJ, Gandolfo MA. 2016. Fruits of Juglandaceae from the Eocene of South America. Systematic Botany 41: 316-328.

[42]

Hoke GD, Jing LZ, Hren MT, Michael T. 2014. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth and Planetary Science Letters 394: 270-278.

[43]

Hu G, Jin Y, Liu JL, Yu MJ. 2014. Functional diversity versus species diversity: Relationships with habitat heterogeneity at multiple scales in a subtropical evergreen broad-leaved forest. Ecology Research 29: 897-903.

[44]

Hu Z, Wang Y, Liu Y, Long HH, Peng J. 2016. Spatio-temporal patterns of urban-rural development and transformation in east of the “Hu Huanyong Line”, China. International Journal of Geo-Information 5: 24.

[45]

Huang K, Xia JY. 2019. High ecosystem stability of evergreen broadleaf forests under severe droughts. Global Change Biology 25: 3494-3503.

[46]

Huang PH, Wang TR, Li M, Lu ZJ, Su RP, Fang OY, Li L, Zhou SS, Tan YH, Meng HH, Song YG, Li J. 2024. RAD-seq data for Engelhardia roxburghiana provide insights into the palaeogeography of Hainan Island and its relationship to mainland China since the late Eocene. Palaeogeography Palaeoclimatology Palaeoecology 651: 112392.

[47]

Isbel F, Gonzalez A, Loreau M, Jane C, Sandra D, Andy H, Georgina MM, David AW, Mary IO, Duffy JE, Lindsay AT, Patrick LT, Anne L. 2017. Linking the influence and dependence of people on biodiversity across scales. Nature 546: 65-72.

[48]

Ji HY, Ye C, Chen YQ, Li JW, Arief H, Miao JL, Wu JY, Zhai JW, Lan SR, Jin XH. 2024. Phylogenomics and biogeographical diversification of Collabieae (Orchidaceae) and its implication in the reconstruction of the dynamic history of Asian evergreen broadleaved forests. Molecular Phylogenetics and Evolution 196: 108084.

[49]

Jiang XL, Elliot MG, Meng HH, Deng M, Xu GB. 2019. Land bridges in the Pleistocene contributed to flora assembly on the continental islands of South China: Insights from the evolutionary history of Quercus championii. Molecular Phylogenetics and Evolution 132: 36-45.

[50]

Jin DM, Yuan Q, Dai XL, Kozlowski G, Song YG. 2024. Enhanced precipitation has driven the evolution of subtropical evergreen broad-leaved forests in eastern China since the early Miocene: Evidence from ring-cupped oaks. Journal of Systematics and Evolution 62: 677-686.

[51]

Jin Y, Behrens P, Tukker A, Scherer L. 2022. Biodiversity loss from freshwater use for China′s electricity generation. Environmental Science Technology 56: 3277-3287.

[52]

Johnson CN, Balmford A, Brook BW, Buettel JC, Galetti M, Lei GC, Wilmshurst JM. 2017. Biodiversity losses and conservation responses in the Anthropocene. Science 356: 270-275.

[53]

Kasbohm J, Schoene B. 2018. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum. Science Advance 4: eaat8223.

[54]

Kira T. 1991. Forest ecosystems of east and southeast Asia in a global perspective. Ecological Research 6: 185-200.

[55]

Kou Y, Cheng S, Tian S, Li B, Fan DM, Chen YJ, Oltis DE, Soltis PS, Zhang ZY. 2016. The antiquity of Cyclocarya paliurus (Juglandaceae) provides new insights into the evolution of relict plants in subtropical China since the late Early Miocene. Journal of Biogeography 43: 351-360.

[56]

Kumar S, Hazra T, Spicer RA, Hazra M, Spicer TEV, Bera S, Khan MA. 2023. Coryphoid palms from the K-Pg boundary of central India and their biogeographical implications: Evidence from megafossil remains. Plant Diversity 45: 80-97.

[57]

Lai YJ, Wen J, Zhou ZK, Ge S, Spicer RA, Chen ZD, Chen YY. 2025. Uplift history and biological evolution of the Himalaya. Journal of Systematics and Evolution 63: 1-4.

[58]

Li L, Li J, Rohwer JG, van der Werff H, Wang ZH, Li HW. 2011. Molecular phylogenetic analysis of the Persea group (Lauraceae) and its biogeographic implications on the evolution of tropical and subtropical Amphi-Pacific disjunctions. American Journal of Botany 98: 1520-1536.

[59]

Li SF, Valdes PJ, Farnsworth A, Davies-Barnard T, Su T, Lunt DJ, Spicer RA, Liu J, Deng WYD, Huang J, Tang H, Ridgwell A, Chen LL, Zhou ZK. 2021. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Science Advance 7: eabc7741.

[60]

Li ZT, Yang MX, Luan XY, Zhong YD, Xu M. 2023. Genetic diversity and geographic distribution patterns of Cinnamomum camphora under climate change in China. Global Ecology and Conservation 46: e02619.

[61]

Lin L, Jiang XL, Guo KQ, Byrne A, Deng M. 2023. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests. Plant Diversity 45: 552-568.

[62]

Linnemann U, Su T, Kunzmann L, Spicer RA, Ding WN, Spicer TEV, Zieger J, Hofmann M, Moraweck K, Gärtner A, Gerdes A, Marko L, Zhang ST, Li SF, Tang H, Huang J, Mulch A, Mosbrugger V, Zhou ZK. 2018. New U-Pb dates show a Paleogene origin for the modern Asian biodiversity hot spots. Geology 46: 3-6.

[63]

Liu JL, Qian H, Jin Y, Wu CP, Chen JH, Yu SQ, Wei XL, Jin XF, Liu JJ, Yu MJ. 2016. Disentangling the drivers of taxonomic and phylogenetic beta diversities in disturbed and undisturbed subtropical forests. Scientific Reports 6: 35926.

[64]

Lu H. 2017. New methods and progress in research on the origins and evolution of prehistoric agriculture in China. Science China-Earth Science 60: 2141-2159.

[65]

Luo D, Song MS, Xu B, Zhang Y, Zhang JW, Ma XG, Hao XJ, Sun H. 2023. A clue to the evolutionary history of modern East Asian flora: Insights from phylogeography and diterpenoid alkaloid distribution pattern of the Spiraea japonica complex. Molecular Phylogenetics and Evolution 184: 107772.

[66]

Luo QL, Jin W. 2017. Distribution and anthropogenic influence of southern natural forests in the Qin and Han Dynasties. Agriculture History of China 4: 102-122.

[67]

Manchester SR. 1987. The fossil history of the Juglandaceae. Missouri: Missouri Botanical Garden.

[68]

Meijer N, Dupont-Nivet G, Abels HA, Kaya MY, Licht A, Xiao MM, Zhang Y, Roperch P, Poujol M, Lai ZP, Zhaojie Guo ZJ. 2019. Central Asian moisture modulated by proto-Paratethys Sea incursions since the early Eocene. Earth and Planetary Science Letters 510: 73-84.

[69]

Meng HH, Gao XY, Huang JF, Zhang ML. 2015a. Plant phylogeography in arid Northwest China: Retrospectives and perspectives. Journal of Systematics and Evolution 53: 33-46.

[70]

Meng HH, Gao XY, Song YG, Cao GL, Li J. 2021. Biodiversity arks in the Anthropocene. Regional Sustainabilty 2: 109-115.

[71]

Meng HH, Jacques FM, Su T, Huang YJ, Zhang ST, Ma HJ, Zhou ZK. 2014. New Biogeographic insight into Bauhinia s.l. (Leguminosae): Integration from fossil records and molecular analyses. BMC Evolutionary Biology 14: 181.

[72]

Meng HH, Song YG. 2023a. Understanding plant diversity from ecological and evolutionary perspectives. Diversity 15: 1165.

[73]

Meng HH, Song YG. 2023b. Biogeographic patterns in Southeast Asia: Retrospectives and perspectives. Biodiversity Science 31: 23261.

[74]

Meng HH, Su T, Huang YJ, Zhu H, Zhou ZK. 2015b. Late Miocene Palaeocarya (Engelhardieae: Juglandaceae) from southwest China and its biogeographic implications. Journal of Systematics and Evolution 53: 499-511.

[75]

Meng HH, Zhang CY, Low SL, Li L, Shen JY, Nurainas , Zhang Y, Huang PH, Zhou SS, Tan YH, Li J. 2022b. Two new species from Sulawesi and Borneo facilitate phylogeny and taxonomic revision of Engelhardia (Juglandaceae). Plant Diversity 44: 552-564.

[76]

Meng HH, Zhang CY, Song YG, Yu XQ, Cao GL, Li L, Cai CN, Xiao JH, Zhou SS, Tan YH, Li J. 2022a. Opening a door to the spatiotemporal history of plants from tropical Indochina Peninsula to subtropical China. Molecular Phylogenetics and Evolution 171: 107458.

[77]

Meng HH, Zhou SS, Jiang XL, Gugger PF, Li L, Tan YH, Li J. 2019a. Are mountaintops climate refugia for plants under global warming? A lesson from highemountain oaks in tropical rainforest. Alpine Botany 129: 175-183.

[78]

Meng HH, Zhou SS, Li L, Tan YH, Li JW, Li J. 2019b. Conflict between biodiversity conservation and economic growth: Insight into rare plants in tropical China. Biodiversity and Conservation 28: 523-537.

[79]

Mosbrugger V, Utescher T, Dilcher DL. 2005. Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences USA 102: 14964-14969.

[80]

Ni J, Yu G, Harrison SP, Prentice IC. 2010. Palaeovegetation in China during the late Quaternary: Biome reconstructions based on a global scheme of plant functional types. Palaeogeography Palaeoclimatology Palaeoecology 289: 44-61.

[81]

Nakamura K, Denda T, Kokubugata G, Suwa R. 2010. Phylogeography of Ophiorrhiza japonica (Rubiaceae) in continental islands, the Ryukyu Archipelago, Japan. Journal of Biogeography 37: 1907-1918.

[82]

Ohsawa M. 1990. An interpretation of latitudinal patterns of forest limits in south and east Asian mountains. Journal of Ecology 78: 326-339.

[83]

Ohsawa M. 1993. Latitudinal pattern of mountain vegetation zonation in southern and eastern Asia. Journal of Vegetation Science 4: 13-18.

[84]

Ohsawa M, Shakya PR, Numata M. 1973. On the occurrence of deciduous broad-leaved forests in the cooltemperate zone of the humid Himalayas in eastern Nepal. Japanese Journal of Ecology 23: 218-228.

[85]

Pregitzer KS, Euskirchen ES. 2004. Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology 10: 2052-2077.

[86]

Olson D, Dellasala DA, Noss RF, Noss RF, Strittholt JR, Kass J, Koopman ME, Allnutt TF. 2012. Climate change refugia for biodiversity in the Klamath-Siskiyou ecoregion. Natural Areas Journal 32: 65-74.

[87]

Qian H, Ricklefs RE. 2000. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407: 180-182.

[88]

Qin SY, Zuo ZY, Guo C, Du XY, Liu SY, Yu XQ, Xiang XG, Rong J, Liu B, Liu ZF, Ma PF, Li DZ. 2023a. Phylogenomic insights into the origin and evolutionary history of evergreen broadleaved forests in East Asia under Cenozoic climate change. Molecular Ecology 32: 2850-2868.

[89]

Qin SY, Zuo ZY, Xu SX, Liu J, Yang FM, Luo YH, Ye JW, Zhao Y, Rong J, Liu B, Ma PF, Li DZ. 2023b. Anthropogenic disturbance driving population decline of a dominant tree in East Asia evergreen broadleaved forests over the last 11,000 years. Conservation Biology 38: e14180.

[90]

Qiu YX, Fu CX, Comes HP. 2011. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world′s most diverse temperate flora. Molecular Phylogenetics and Evolution 59: 225-244.

[91]

Quade J, Cerling TE, Bowman JR. 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342: 163-166.

[92]

Ramírez-Preciado RP, Gasca-Pineda J, Arteaga MC. 2019. Effects of global warming on the potential distribution ranges of six Quercus species (Fagaceae). Flora 251: 32-38.

[93]

Raymo ME, Ruddiman WF. 1992. Tectonic forcing of Late Cenozoic climate. Nature 359: 117-122.

[94]

Roberts P, Hunt C, Arroyo-Kalin M, Evans D, Boivin N. 2017. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nature Plants 3: 17093.

[95]

Rowley DB. 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth and Planetary Science Letters 145: 1-13.

[96]

Shang KK, Zhang QP, Da LJ, Hara K, Yang YC, Fujihara M, Tomita M, Zhao Y. 2014. Effects of natural and artificial disturbance on landscape and forest structure in Tiantong National Forest Park, East China. Landscape Ecological Engineering 10: 163-172.

[97]

Shi MM, Michalski SG, Welk E, Chen XY, Walter D. 2014. Phylogeography of a widespread Asian subtropical tree: Genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. Journal of Biogeography 41: 1710-1720.

[98]

Shoo LP, Storlie C, Vanderwal J, Little J, Williams SE. 2011. Targeted protection and restoration to conserve tropical biodiversity in a warming world. Global Change Biology 17: 186-193.

[99]

Song YC. 1999. The historical shift of the evergreen broad-leaved forest in East China. In: Kiătzii F, Walther GR, eds. Conference on recent shifts in vegetation boundaries of deciduous forests, especially due to general global warming. Basel: Springer International Publishing AG. 253-272.

[100]

Song YC. 2013. Evergreen broad-leaved forests in China, classification-ecology-conservation. Beijing: Science Press.

[101]

Song YC, Chen XY. 2007. Degradation mechanism and ecological restoration of evergreen broad-leaved forest ecosystem in east China. Beijing: Science Press.

[102]

Song YC, Chen XY, Wang XH. 2005. Study on evergreen broad-leaved forests of China: A retrospect and prospect. Journal of East China Normal University 1: 1-8.

[103]

Song YC, Da LJ. 2016. Evergreen broad-leaved forest of East Asia. In: Box EO, ed. Vegetation structure and function at multiple spatial, temporal and conceptual scales. Basel: Springer International Publishing AG. 101-128.

[104]

Song YG, Li Y, Meng HH, Fragnière Y, Ge BJ, Sakio H, Yousefzadeh H, Bétrisey S, Kozlowski G. 2020. Phylogeny, taxonomy, and biogeography of Pterocarya (Juglandaceae). Plants 9: 1524.

[105]

Song YG, Petitpierre B, Deng M, Wu JP, Kozlowski G. 2019. Predicting climate change impacts on the threatened Quercus arbutifolia in montane cloud forests in southern China and Vietnam: Conservation implications. Forest Ecology and Management 444: 269-279.

[106]

Song YG, Wang TR, Lu ZJ, Ge BJ, Zhong X, Li XC, Jin DM, Yuan Q, Li Y, Kang YX, Ning X, Zheng SS, Yi LT, Dai XL, Cao JG, Lee JH, Kozlowski G. 2023. Population survey combined with genomic-wide genetic variation unravels the endangered status of Quercus gilva. Diversity 15: 230.

[107]

Spicer RA. 2017. Tibet, the Himalaya, Asian monsoons and biodiversity—In what ways are they related? Plant Diversity 39: 233-244.

[108]

Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C. 2015. The trajectory of the Anthropocene: The great acceleration. Anthropocene Review 2: 81-98.

[109]

Steinthorsdottir M, Coxall HK, de Boer AM, Huber M, Barbolini N, Bradshaw CD, Burls NJ, Feakins SJ, Gasson E, Henderiks J, Holbourn AE, Kiel S, Kohn MJ, Knorr G, Kürschner WM, Lear CH, Liebrand D, Lunt DJ, Mörs T, Pearson PN, Pound MJ, Stoll H, Strmberg CAE. 2021. The Miocene: The future of the past. Paleoceanography Palaeoclimatology 36: e2020PA004037.

[110]

Su T, Spicer RA, Li SH, Xu H, Huang J, Sherlock S, Huang YJ, Li SF, Wang L, Jia LB, Deng WYD, Liu J, Deng CL, Zhang ST, Valdes PJ, Zhou ZK. 2019. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. National Sciences Review 6: 495-504.

[111]

Su T, Spicer RA, Wu FX, Farnsworth A, Huang J, Rio CD, Deng T, Ding L, Deng WYD, Huang YJ, Hughes A, Jia LB, Jin JH, Li SF, Liang SQ, Liu J, Liu XY, Sherlock S, Spicer T, Srivastava G, Tang H, Valdes P, Wang TX, Widdowson M, Wu MX, Xing YW, Xu CL, Yang J, Zhang C, Zhang ST, Zhang XW, Zhao F, Zhou ZK. 2020. A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet. Proceedings of the National Academy of Sciences of USA 117: 32989-32995.

[112]

Sun XJ, Wang PX. 2005. How old is the Asian Monsoon system? Palaeobotanical records from China. Palaeogeography Palaeoclimatology Palaeoecology 222: 181-222.

[113]

Sun Y, Hu H, Huang H, Vargas-Mendoza CF. 2014. Chloroplast diversity and population differentiation of Castanopsis fargesii (Fagaceae): A dominant tree species in evergreen broad-leaved forest of subtropical China. Tree Genetics and Genomes 10: 1531-1539.

[114]

Sun ZX, Yang LH, Kong HH, Kang M, Wang J. 2024. Phylogeographic patterns match the floristic subdivisions: The diversification history of a widespread herb in subtropical China. Annals of Botany 134: 1263-1276.

[115]

Tagawa H. 1995. Distribution of lucidophyll oak-laurel forest formation in Asia and other areas. Tropics 5: 1-40.

[116]

Takhtajan A. 1969. Flowering plants: Origin and dispersal. In: Jeffrey TC, ed. Edinburgh: Oliver & Boyd.

[117]

Tang CQ. 2015a. Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, as compared with those of the eastern Chinese subtropical regions. Collectanea Botanica 34: e006.

[118]

Tang CQ. 2015b. Evergreen broad-leaved forests. In: Tang CQ, ed. The subtropical vegetation of Southwestern China: Plant distribution, diversity and ecology. Utrecht: Springer Netherlands. 49-112.

[119]

Tang CQ, Chiou CR, Lin CT, Lin JY, Hou X. 2013. Plant diversity patterns in subtropical evergreen broad-leaved forests of Yunnan and Taiwan. Ecology Research 28: 81-92.

[120]

Tang CQ, Matsui T, Ohashi H, Nualart N, Herrando-Moraira S, Dong YF, Grote PJ, Ngoc N, Sam HV, Li SF, Han PB, Shen LQ, Huang DS, Peng MC, Wang CY, Li XS, Yan HZ, Zhu MY, Lu X, Wen JZ, Yao SQ, Du MR, Shi YC, Xiao SL, Zeng JL, Wang HC, López-Pujol J. 2022. Identifying long-term stable refugia for dominant Castanopsis species of evergreen broad-leaved forests in East Asia: A tool for ensuring their conservation. Biology Conservation 273: 109663.

[121]

Tang CQ, Ohsawa M. 2009. Ecology of subtropical evergreen broad-leaved forests of Yunnan, southwestern China as compared to those of southwestern Japan. Journal of Plant Research 122: 335-350.

[122]

Tang JF, Zhao XZ. 2022. Large variability in response to future climate and land-use changes among Chinese Theaceae species. Ecology and Evolution 12: e9480.

[123]

Tapponnier P, Lacassin R, Leloup PH, Schärer U, Zhong DL, Wu HW, Liu XH, Ji SC, Zhang LS, Zhong JY. 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature 343: 431-437.

[124]

Tardif D, Fluteau F, Donnadieu Y, Hir GL, Ladant JB, Sepulchre P, Licht A, Publet F, Dupont-Nivet G. 2020. The origin of Asian monsoons: A modelling perspective. Climate of the Past 16: 847-865.

[125]

Tian S, Kou YX, Zhang ZR, Yuan L, Li DR, Lopez-Pujol J, Fan DM, Zhang ZY. 2018. Phylogeography of Eomecon chionantha in subtropical China: The dual roles of the Nanling Mountains as a glacial refugium and a dispersal corridor. BMC Evolutionary Biology 18: 20.

[126]

Tian YM, Spicer RA, Huang J, Zhou ZK, Su T, Widdowson M, Jia LB, Li SH, Wu WJ, Xue L, Luo PH, Zhang ST. 2021. New early Oligocene zircon U-Pb dates for the ‘Miocene′ Wenshan Basin, Yunnan, China: Biodiversity and paleoenvironment. Earth and Planetary Science Letters 565: 116292.

[127]

Tiffney BH, Manchester SR. 2001. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the northern hemisphere Tertiary. International Journal of Plant Science 162: S3-S17.

[128]

van der Hammen T, Cleef A. 1983. Trigonobalanus and the tropical amphi-pacific element in the North Andean forest. Journal of Biogeography 10: 437-440.

[129]

Wallace AR. 1876. The geographical distribution of animals. London: Macmillan.

[130]

Wan QC, Huang KY, Chen SF, Boyer F, Taberlet P, Li HW, Chen C, Tang YJ, Zheng Z, Cheddadi R, Zhang X. 2023. Fagus diversification in China in relation to East Asian Monsoon evolution. Quaternary Science Review 320: 108350.

[131]

Wang B, Ding Q. 2008. Global monsoon: Dominant mode of annual variation in the tropics. Dynamics of Atmospheres and Oceans 44: 165-183.

[132]

Wang B, Shi GL, Xu CP, Spicer RA, Perrichot V, Schmidt AR, Feldberg K, Heinrichs J, Chény C, Pang H, Liu XY, Gao TP, Wang ZX, Ślipiński A, Solórzano-Kraemer MM, Heads SW, Thomas MJ, Sadowski EM, Szwedo J, Azar D, Nel A, Liu Y, Chen J, Zhang Q, Zhang QQ, Luo CH, Yu TT, Zheng DR, Zhang HC, Engel MS. 2021. The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia. Science Advances 7: eabg0625.

[133]

Wang J, Gao PX, Kang M, Lowe AJ, Huang HW. 2009. Refugia within refugia: The case study of a canopy tree (Eurycorymbus cavaleriei) in subtropical China. Journal of Biogeography 36: 2156-2164.

[134]

Wang LC. 2024. Subtropical montane vegetation dynamics in response to Holocene climate change in central Taiwan. Vegetation History and Archaeobotany 33: 643-655.

[135]

Wang TR, Meng HH, Wang N, Zheng SS, Jiang Y, Lin DQ, Song YG, Kozlowski G. 2023. Adaptive divergence and genetic vulnerability of relict species under climate change: A case study of Pterocarya macroptera. Annals of Botany 132: 241-254.

[136]

Wang W, Xiang XG, Xiang KL, Ortiz RD, Jabbour F, Chen ZD. 2020. A dated phylogeny of Lardizabalaceae reveals an unusual long-distance dispersal across the Pacific Ocean and the rapid rise of East Asian subtropical evergreen broadleaved forests in the late Miocene. Cladistics 36: 447-457.

[137]

Wang XH, Kent M, Fang XF. 2007. Evergreen broad-leaved forest in Eastern China: Its ecology and conservation and the importance of resprouting in forest restoration. Forest Ecology and Management 245: 76-87.

[138]

Whittaker RJ, Araujo MB, Jepson P, Ladle RJ, Watson JEM, Willis KJ. 2005. Conservation biogeography: Assessment and prospect. Diversity and Distribution 11: 3-23.

[139]

Wolfe JA. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the northern hemisphere and Australasia Geological Survey Professional Paper, 1106. Washington: United States Government Printing Office.

[140]

Woodruff DS. 2010. Biogeography and conservation in Southeast Asia: How 2.7 million years of repeated environmental fluctuations affect today′s patterns and the future of the remaining refugial-phase biodiversity. Biodiversity and Conservation 19: 919-941.

[141]

Wu CY. 1965. On the tropical affinities of Chinese flora. Chinese Science Bulletin 1: 25-33.

[142]

Wu CY. 1980. Vegetation of China. Beijing: Science Press.

[143]

Wu CY, Wu SG. 1996. A proposal for a New Floristic Kingdom (realm): The E. Asiatic Kingdom, its delineation and characteristics. In: Zhang AL, Wu SG, eds. Floristic characteristics and diversity of East Asian plants. Beijing: China Higher Education Press. 3-42.

[144]

Wu DY, Milne RI, Yang H, Zhang YJ, Wang Y, Jia SY, Li JL, Mao KS. 2025. Phylogenomics shed light on the complex evolutionaryhistory of a gymnosperm genus showing East Asian-Tethyan disjunction. Journal of Systematics and Evolution (Online).

[145]

Wu FL, Fang XM, Yang YB, Dupont-Nivet G, Nie JS, Fluteau F, Zhang T, Han WX. 2022. Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nature Reviews Earth and Environment 3: 684-700.

[146]

Wu HY, Liu YH, He QX, Ye JW, Tian B. 2024. Differential distribution shifts in two subregions of East Asian subtropical evergreen broadleaved forests—A case of Magnoliaceae. Frontiers in Plant Science 14: 1326207.

[147]

Xiang XG, Mi XC, Zhou HL, Li JW, Chung SW, Li DZ, Huang WC, Jin WT, Li ZY, Huang LQ, Jin XH. 2016. Biogeographical diversification of mainland Asian Dendrobium (Orchidaceae) and its implications for the historical dynamics of evergreen broad-leaved forests. Journal of Biogeography 43: 1310-1323.

[148]

Xu H, Su T, Zhang ST, Deng M, Zhou ZK. 2016. The first fossil record of ring-cupped oak (Quercus L. subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeography Palaeoclimatology Palaeoecology 442: 61-71.

[149]

Xu J, Deng M, Jiang XL, Westwood M, Song YG, Turkington R. 2015. Phylogeography of Quercus glauca (Fagaceae), a dominant tree of East Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genetics and Genomes 11: 1-17.

[150]

Xu JX, Ferguson DK, Li CS, Wang YF. 2008. Late Miocene vegetation and climate of the Lühe region in Yunnan, southwestern China. Review of Palaeobotany and Palynology 148: 36-59.

[151]

Ye JW, Li DZ. 2022. Diversification of East Asian subtropical evergreen broadleaved forests over the last 8 million years. Ecology and Evolution 12: e9451.

[152]

Ye JW, Li DZ, Hampe A. 2019. Differential Quaternary dynamics of evergreen broadleaved forests in subtropical China revealed by phylogeography of Lindera aggregata (Lauraceae). Journal of Biogeography 46: 1112-1123.

[153]

Ye JW, Tian B, Li DZ. 2022. Monsoon intensification in East Asia triggered the evolution of its flora. Frontiers In Plant Science 13: 1046538.

[154]

Ye JW, Zhang Y, Wang XJ. 2017. Phylogeographic breaks and the mechanisms of their formation in the Sino-Japanese floristic region. Chinese Journal of Plant Ecology 41: 1003-1019.

[155]

Ying TS. 2001. Species diversity and distribution pattern of seed plants in China. Biodiversity Science 9: 393-398.

[156]

Yu XQ, Gao LM, Soltis DE, Soltis PS, Yang JB, Fang L, Yang SX, Li DZ. 2017. Insights into the historical assembly of East Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family. New Phytologist 215: 1235-1248.

[157]

Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686-693.

[158]

Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: 279-283.

[159]

Zhang CY, Low SL, Song YG, Nurainas , Kozlowski G, Zhou SS, Tan YH, Cao GL, Zhou Z, Meng HH, Li J. 2020. Shining a light on species delimitation in the tree genus Engelhardia Leschenault ex Blume (Juglandaceae). Molecular Phylogenetics and Evolution 152: 106918.

[160]

Zhang LG, Li XQ, Jin WT, Liu YJ, Zhao Y, Rong J, Xiang XG. 2023b. Asymmetric migration dynamics of the tropical Asian and Australasian floras. Plant Diversity 45: 20-26.

[161]

Zhang Q, Yang YC, Liu B, Lu LM, Sauquet H, Li DZ, Chen ZD. 2024. Meta-analysis provides insights into the origin and evolution of East Asian evergreen broad-leaved forests. New Phytologist 242: 2369-2379.

[162]

Zhang QY, Ree RH, Salamin NS, Xing YW, Silvestro D. 2022a. Fossil-informed models reveal a Boreotropical origin and divergent evolutionary trajectories in the walnut family (Juglandaceae). Systematic Biology 71: 242-258.

[163]

Zhang TT, Wang X, Ren HB, Yuan JP, Jin Y, Qian HY, Song XY, Ma KP, Yu MJ. 2019. A comparative study on the community characteristics of secondary and old-growth evergreen broad-leaved forests in Gutianshan, Zhejiang Province. Biodiversity Science 27: 1069-1080.

[164]

Zhang Y, Duan MG, Huang PH, Li M, Meng HH, Qiao HJ, Li J. 2023a. Blinded by the bright—Afforestation is affecting widespread sampling deficiency in plant collections. Forest Ecology and Management 530: 120765.

[165]

Zhang Y, Song YG, Zhang CY, Wang TR, Su TH, Huang PH, Meng HH, Li J. 2022b. Latitudinal diversity gradient in the changing world: Retrospectives and perspectives. Diversity 14: 334.

[166]

Zhao JG, Li SF, Huang J, Ding WN, Wu MX, Su T, Farnsworth A, Valdes PJ, Chen LL, Xing YW, Zhou ZK. 2025. Heterogeneous occurrence of evergreen broad-leaved forests in East Asia: Evidence from plant fossils. Plant Diversity 47: 1-12.

[167]

Zhao LN, Li JY, Barrett RL, Liu B, Hu HH, Lu LM, Chen ZD. 2024. Spatial heterogeneity of extinction risk for flowering plants in China. Nature Communications 15: 6352.

[168]

Zhao N, Park S, Zhang YQ, Nie ZL, Ge XJ, Kim S, Yan HF. 2022. Fingerprints of climatic changes through the late Cenozoic in southern Asian flora: Magnolia section Michelia (Magnoliaceae). Annals of Botany 130: 41-52.

[169]

Zheng Z, Ma T, Roberts P, Li Z, Yue YF, Peng HH, Huang KY, Han ZY, Wan QC, Zhang YZ, Zhang X, Zheng YW, Satio Y. 2021. Anthropogenic impacts on Late Holocene land-cover change and floristic biodiversity loss in tropical southeastern Asia. Proceedings of the National Academy of Sciences of the USA 118: e2022210118.

[170]

Zhou SF, Long H, Xing H, Zhang K, Wang R, Zhang E. 2023. Human activities facilitated the decline of forest ecosystem in East Asia after 5000 a BP. Earth-Science Reviews 245: 104552.

[171]

Zhou ZK, Wang TX, Huang J, Liu J, Deng WYD, Li SH, Deng CL, Su T. 2019. Fossil leaves of Berhamniphyllum (Rhamnaceae) from Markam, Tibet and their biogeographic implications. Science China-Earth Sciences 63: 224-234.

[172]

Zhu CG, Meng J, Hu YY, Wang CS, Zhang J. 2019. East-central Asian climate evolved with the northward migration of the high proto-Tibetan Plateau. Geophysical Research Letters 46: 8397-8406.

[173]

Zhu H. 2017. A biogeographical study on tropical flora of southern China. Ecology and Evolution 7: 10398-10408.

[174]

Zhu H. 2018. Suggestions for the northern boundary of the tropical zone in China. Plant Science Journal 36: 893-898.

[175]

Zhu H, Tan Y. 2024. The Origin of evergreen broad-leaved forests in East Asia from the evidence of floristic elements. Plants 13: 1106.

[176]

Zuo XX, Lu HY, Jiang LP, Zhang JP, Yang XY, Huan XJ, He KY, Wang C, Wu NQ. 2017. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proceedings of the National Academy of Sciences of the USA 114: 6486-6491.

RIGHTS & PERMISSIONS

2025 Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

61

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/