Revised phylogenomic analysis and Cretaceous fossil evidence reveal new insights into evolution of Scirtinae (Coleoptera: Scirtidae)

Yan‑Da Li , Rafał Ruta , Di‑Ying Huang , Chen‑Yang Cai

Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (5) : 1166 -1178.

PDF
Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (5) : 1166 -1178. DOI: 10.1111/jse.13182
Research Article

Revised phylogenomic analysis and Cretaceous fossil evidence reveal new insights into evolution of Scirtinae (Coleoptera: Scirtidae)

Author information +
History +
PDF

Abstract

Recent phylogenomic studies have confirmed that Scirtidae is one of the earliest-diverging groups of polyphagan beetles. Cretaceous fossils and genome-scale data have shown promise in elucidating the evolutionary history of Scirtidae. However, knowledge about the Mesozoic diversity of scirtids remains limited, and a recent phylogenomic study of Australasian Scirtinae failed to consider among-site compositional heterogeneity. In this study, we present a refined phylogeny of Scirtinae by analyzing ultraconserved element data under the better-fitting site-heterogeneous CAT-GTR+G4 model. A new scirtine fossil, Serracyphon philipsi gen. et sp. nov., is reported from mid-Cretaceous Kachin amber. This fossil is characterized by serrate antennae, uncarinated antennomere 1, absence of subocular carinae, and absence of a buttonhole on subgenal ridges. The placement of Serracyphon is evaluated within our updated phylogenomic framework for scirtine evolution. Additionally, we critically reevaluate the taxonomy of the “Scirtes” fossils previously described from the Eocene of the Isle of Wight.

Keywords

fossil / Kachin amber / phylogenomics / Scirtinae

Cite this article

Download citation ▾
Yan‑Da Li, Rafał Ruta, Di‑Ying Huang, Chen‑Yang Cai. Revised phylogenomic analysis and Cretaceous fossil evidence reveal new insights into evolution of Scirtinae (Coleoptera: Scirtidae). Journal of Systematics and Evolution, 2025, 63(5): 1166-1178 DOI:10.1111/jse.13182

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alekseev VI. 2013. The beetles (Insecta: Coleoptera) of Baltic amber: The checklist of described species and preliminary analysis of biodiversity. Zoology and Ecology 23: 5-12.

[2]

Bradford TM, Ruta R, Cooper SJB, Libonatti ML, Watts CHS. 2022. Evolutionary history of the Australasian Scirtinae (Scirtidae; Coleoptera) inferred from ultraconserved elements. Invertebrate Systematics 36: 291-305.

[3]

Bujaki T, Van Looyen K, Rodrigue N. 2023. Measuring the relative contribution to predictive power of modern nucleotide substitution modeling approaches. Bioinformatics Advances 3: vbad091.

[4]

Cai C, Huang D. 2014. The oldest micropepline beetle from Cretaceous Burmese amber and its phylogenetic implications (Coleoptera: Staphylinidae). Naturwissenschaften 101: 813-817.

[5]

Cai C, Tihelka E, Pisani D, Donoghue PCJ. 2020. Data curation and modeling of compositional heterogeneity in insect phylogenomics: A case study of the phylogeny of Dytiscoidea (Coleoptera: Adephaga). Molecular Phylogenetics and Evolution 147: 106782.

[6]

Cai C, Tihelka E, Giacomelli M, Lawrence JF, Ślipiński A, Kundrata R, Yamamoto S, Thayer MK, Newton AF, Leschen RAB, Gimmel ML, L, Engel MS, Bouchard P, Huang D, Pisani D, Donoghue PCJ. 2022. Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science 9: 211771.

[7]

Cooper SJB, Watts CHS, Saint KM, Leijs R. 2014. Phylogenetic relationships of Australian Scirtidae (Coleoptera) based on mitochondrial and nuclear sequences. Invertebrate Systematics 28: 628-642.

[8]

Engel MS. 2010. A primitive anobiid beetle in mid-Cretaceous amber from Myanmar (Coleoptera: Anobiidae). Alavesia 3: 31-34.

[9]

Fu Y-Z, Li Y-D, Su Y-T, Cai C-Y, Huang D-Y. 2021. Application of confocal laser scanning microscopy to the study of amber bioinclusions. Palaeoentomology 4: 266-278.

[10]

Goloboff PA, Torres A, Arias JS. 2018. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34: 407-437.

[11]

Háva J, Zahradník P. 2023. Nicobium cretaceum sp. nov. (Coleoptera: Bostrichoidea: Ptinidae), a new species from mid-Cretaceous Burmese amber. Studies and Reports, Taxonomical Series 19: 289-292.

[12]

Kaulfuss U, Szawaryn K, Lee D, Ruta R. 2024. The first beetle species described from Oligocene New Zealand amber (Coleoptera: Scirtidae). Palaeoentomology 7: 529-538.

[13]

Kiałka A, Ruta R. 2018. Meatopida gen. nov., a new genus to accommodate two species originally described in Atopida White, 1846 (Coleoptera: Scirtoidea: Scirtidae). Zootaxa 4382: 242-260.

[14]

Kiałka A, Ruta R. 2022. Revision of Atopida White, 1846 (Coleoptera: Scirtoidea: Scirtidae). Zootaxa 5174: 401-443.

[15]

Kirejtshuk AG, Nel A. 2008. New beetles of the suborder Polyphaga from the Lowermost Eocene French amber (Insecta: Coleoptera). Annales de la Societe entomologique de France 44: 419-442.

[16]

Kirejtshuk AG, Azar D. 2008. New taxa of beetles (Insecta, Coleoptera) from Lebanese amber with evolutionary and systematic comments. Alavesia 2: 15-46.

[17]

Kirejtshuk AG, Ponomarenko AG, Kurochkin AS, Alexeev AV, Gratshev VG, Solodovnikov AY, Krell FT, Soriano C. 2019. The beetle (Coleoptera) fauna of the Insect Limestone (late Eocene), Isle of Wight, southern England. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 110: 405-492.

[18]

Klausnitzer B. 2004a. Neue Arten der Familie Scirtidae (Coleoptera) aus Baltischem Bernstein (Teil 1) (106. Beitrag zur Kenntnis der Scirtidae). Entomologische Nachrichten und Berichte 48: 99-103.

[19]

Klausnitzer B. 2004b. Eine neue Gattung der Familie Scirtidae (Insecta: Coleoptera). Entomologische Abhandlungen 62: 77-82.

[20]

Klausnitzer B. 2009. Insecta: Coleoptera: Scirtidae. Süßwasserfauna von Mitteleuropa Bd. 20/17. Heidelberg: Spektrum Akademischer Verlag.

[21]

Klausnitzer B. 2011. Beschreibung von Prionocara n. gen. aus der Orientalischen Region (Coleoptera, Scirtidae). (165. Beitrag zur Kenntnis der Scirtidae). Entomologische Blätter 107: 65-76.

[22]

Klausnitzer B. 2012. Neue Arten der Familie Scirtidae (Coleoptera) aus Baltischem Bernstein (Teil 3) (172. Beitrag zur Kenntnis der Scirtidae). Linzer biologische Beitrage 44: 313-318.

[23]

Lartillot N. 2020. PhyloBayes: Bayesian phylogenetics using site-heterogeneous models. In: Scornavacca C, Delsuc F, Galtier N eds. Phylogenetics in the genomic era. Authors open access book. 1.5:1-1.5:16.

[24]

Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution 21: 1095-1109.

[25]

Lartillot N, Brinkmann H, Philippe H. 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evolutionary Biology 7: S4.

[26]

Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Systematic Biology 62: 611-615.

[27]

Lawrence JF. 2016. Scirtidae Fleming, 1821. In: Beutel RG, Leschen RAB eds. Handbook of zoology, Arthropoda: Insecta, Coleoptera, beetles, Vol. 1: morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). 2nd ed. Berlin: Walter de Gruyter. 215-225.

[28]

Lawrence JF, Yoshitomi H. 2007. Nipponocyphon, a new genus of Japanese Scirtidae (Coleoptera) and its phylogenetic signifcance. Elytra, Tokyo 35: 507-527.

[29]

Letunic I, Bork P. 2024. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research 52: W78-W82.

[30]

Li Y-D, Yamamoto S, Huang D-Y, Cai C-Y. 2021. New species of Paraodontomma from mid-Cretaceous Burmese amber with muscle tissue preservation (Coleoptera: Archostemata: Ommatidae). Papéis Avulsos de Zoologia 61: e20216153.

[31]

Li Y-D, Ruta R, Tihelka E, Liu Z-H, Huang D-Y, Cai C-Y. 2022a. A new marsh beetle from mid-Cretaceous amber of northern Myanmar (Coleoptera: Scirtidae). Scientific Reports 12: 13403.

[32]

Li Y-D, Zhang Y-B, Szawaryn K, Huang D-Y, Cai C-Y. 2022b. Earliest fossil record of Corylophidae from Burmese amber and phylogeny of Corylophidae (Coleoptera: Coccinelloidea). Arthropod Systematics & Phylogeny 80: 411-422.

[33]

Li Y-D, Engel MS, Tihelka E, Cai C. 2023a. Phylogenomics of weevils revisited: Data curation and modelling compositional heterogeneity. Biology Letters 19: 20230307.

[34]

Li Y-D, Liu Z, Huang D, Cai C. 2023b. An unusual lineage of Helotidae in mid-Cretaceous amber from northern Myanmar (Coleoptera: Nitiduloidea). Invertebrate Systematics 37: 538-551.

[35]

Li Y-D, Ślipiński A, Huang D-Y, Cai C-Y. 2023c. New fossils of Sphaeriusidae from mid-Cretaceous Burmese amber revealed by confocal microscopy (Coleoptera: Myxophaga). Frontiers in Earth Science 10: 901573.

[36]

Li Y-D, Yamamoto S, Newton AF, Cai C. 2023d. Kekveus brevisulcatus sp. nov., a new featherwing beetle from mid-Cretaceous amber of northern Myanmar (Coleoptera: Ptiliidae). PeerJ 11: e15306.

[37]

Li Y-D, Kolibáč J, Liu Z-H, Ślipiński A, Yamamoto S, Yu Y-L, Zhang W-T, Cai C-Y. 2024. Foveapeltis gen. nov., an unusual cleroid genus with large hypomeral cavities from mid-Cretaceous amber (Coleoptera: Cleroidea). Ecology and Evolution 14: e11589.

[38]

Li Y-D, Philips TK, Huang D-Y, Cai C-Y. 2025. Toxesbium gen. nov., the first definitive member of Ernobiinae from mid-Cretaceous amber of northern Myanmar (Coleoptera: Ptinidae). PalZ 99: 25-33.

[39]

Libonatti ML. 2014. A revision of the genus Ora Clark, 1865 (Coleoptera: Scirtidae) in Argentina (part I)—descriptions of new species. Zootaxa 3884: 27-44.

[40]

Libonatti ML. 2017. Notes on some South American species of Scirtes Illiger, 1807 (Coleoptera: Scirtidae). Annales Zoologici 67: 349-368.

[41]

McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, Clarke DJ, Donath A, Escalona HE, Friedrich F, Letsch H, Liu S, Maddison D, Mayer C, Misof B, Murin PJ, Niehuis O, Peters RS, Podsiadlowski L, Pohl H, Scully ED, Yan EV, Zhou X, Ślipiński A, Beutel RG. 2019. The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences USA 116: 24729-24737.

[42]

Nadein K, Kovalev A, Gorb SN. 2022. Jumping mechanism in the marsh beetles (Coleoptera: Scirtidae). Scientific Reports 12: 15834.

[43]

Peris D, Philips TK, Delclòs X. 2015. Ptinid beetles from the Cretaceous gymnosperm-dominated forests. Cretaceous Research 52: 440-452.

[44]

Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D. 2011. Resolving difficult phylogenetic questions: Why more sequences are not enough. PLoS Biology 9: e1000602.

[45]

Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O, Philippe H, Lartillot N, Wörheide G. 2015. Genomic data do not support comb jellies as the sister group to all other animals. Proceedings of the National Academy of Sciences USA 112: 15402-15407.

[46]

R Core Team. 2021. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

[47]

Richter A, Boudinot B, Yamamoto S, Katzke J, Beutel RG. 2022. The first reconstruction of the head anatomy of a Cretaceous insect, †Gerontoformica gracilis (Hymenoptera: Formicidae), and the early evolution of ants. Insect Systematics and Diversity 6: 4.

[48]

Ruta R. 2010a. Two new species of Prionocyphon Redtenbacher from Taiwan (Coleoptera: Scirtidae), with notes on Prionocyphon, Mescirtes Motschulsky and Prionoscirtes Champion from East and Southeast Asia. Zootaxa 2402: 52-60.

[49]

Ruta R. 2010b. Revision of the genus Calvarium Pic, 1918 (Coleoptera: Scirtidae). Part 1. Redescription of the genus and catalogue of described taxa. Annales Zoologici 60: 341-350.

[50]

Ruta R. 2019. Calvariopsis gen. nov., a new genus of Neotropical Scirtidae (Coleoptera: Scirtoidea). Zootaxa 4604: 1-41.

[51]

Ruta R. 2023. Revision of Neotropical Prionocyphon Redtenbacher (Coleoptera: Scirtidae: Scirtinae). Annales Zoologici 73: 535-567.

[52]

Ruta R, Yoshitomi H. 2022. Calvariomorphus—a new genus of marsh beetles (Coleoptera: Scirtidae) with remarkable elytral excitators. Zootaxa 5120: 65-82.

[53]

Ruta R, Thorpe S, Yoshitomi H. 2011. Stenocyphon neozealandicus, a new species from New Zealand of a previously monotypic subfamily from Chile (Coleoptera: Scirtidae: Stenocyphoninae). Zootaxa 3113: 65-68.

[54]

Smith MR. 2019. Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biology Letters 15: 20180632.

[55]

Smith MR. 2023. TreeSearch: Morphological phylogenetic analysis in R. The R Journal 14/4: 305-315.

[56]

Tihelka E, Cai C, Giacomelli M, Lozano-Fernandez J, Rota-Stabelli O, Huang D, Engel MS, Donoghue PCJ, Pisani D. 2021. The evolution of insect biodiversity. Current Biology 31: R1299-R1311.

[57]

Watts CHS, Hamon H. 2023. Fossil marsh beetle larvae (Scirtidae: Coleoptera) from the Lower Cretaceous (Aptian) Koonwarra Fossil Bed of Victoria, Australia. Alcheringa: An Australasian Journal of Palaeontology 47: 122-126.

[58]

Watts CHS, Cooper SJB, Saint KM. 2017. Review of Australian Scirtes Illiger, Ora Clark and Exochomoscirtes Pic (Coleoptera: Scirtidae) including descriptions of new species, new groups and a multi-gene molecular phylogeny of Australian and non-Australian species. Zootaxa 4347: 511-532.

[59]

Watts CHS, Cooper SJB, Libonatti ML. 2020. New genera, species and combinations in the Pseudomicrocara Armstrong group (Coleoptera: Scirtidae) based on morphology supported by mitochondrial and nuclear gene sequence data. Zootaxa 4831: 1-66.

[60]

Watts CHS, Bradford TM, Cooper SJB. 2021. A new genus, Perplexacara, and new generic placements of species of Australian marsh beetles (Coleoptera: Scirtidae) based on morphology and molecular genetic data. Zootaxa 4927: 539-548.

[61]

Yoshitomi H. 2005. Systematic revision of the family Scirtidae of Japan, with phylogeny, morphology and bionomics (Insecta: Coleoptera, Scirtoidea). Japanese Journal of Systematic Entomology Monographic Series 3: 1-212.

[62]

Zhang YM, Williams JL, Lucky A. 2019. Understanding UCEs: A comprehensive primer on using ultraconserved elements for arthropod phylogenomics. Insect Systematics and Diversity 3: 3.

[63]

Zhuang Y, Xu W, Zhang G, Mai H, Li X, He H, Ran H, Liu Y. 2022. Unparalleled details of soft tissues in a Cretaceous ant. BMC Ecology and Evolution 22: 146.

[64]

Zwick P. 2013a. Australian Marsh Beetles (Coleoptera: Scirtidae). 4. Two new genera, Austrocyphon and Tasmanocyphon. Zootaxa 3706: 1-74.

[65]

Zwick P. 2013b. Australian Marsh Beetles. 3. A restricted concept of genus Cyphon, Australian species of Cyphon s. str., and the new Australasian genus Nanocyphon (Coleoptera: Scirtidae). Genus 24: 163-189.

[66]

Zwick P. 2014. Australian Marsh Beetles (Coleoptera: Scirtidae). 6. Genera Calvarium Pic, Papuacyphon Zwick, and Ypsiloncyphon Klausnitzer. Zootaxa 3846: 1-41.

[67]

Zwick P. 2015. Australian Marsh Beetles (Coleoptera: Scirtidae). 8. The new genera Cygnocyphon, Eximiocyphon, Paracyphon, Leptocyphon, Tectocyphon, and additions to Contacyphon de Gozis, Nanocyphon Zwick and Eurycyphon Watts. Zootaxa 3981: 451-490.

[68]

Zwick P, Klausnitzer B, Ruta R. 2013. Contacyphon Gozis, 1886 removed from synonymy (Coleoptera: Scirtidae) to accommodate species so far combined with the invalid name, Cyphon Paykull, 1799. Entomologische Blätter und Coleoptera 109: 337-353.

RIGHTS & PERMISSIONS

2025 The Author(s). Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/