Impacts of climatic niche breadth, phylogeny, traits and ploidy on geographical ranges of Betula species

Feifei Yan , Lu Liu , Junyi Ding , Kexin Fan , Richard J. A. Buggs , Nian Wang

Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (4) : 939 -951.

PDF
Journal of Systematics and Evolution ›› 2025, Vol. 63 ›› Issue (4) : 939 -951. DOI: 10.1111/jse.13176
Research Article

Impacts of climatic niche breadth, phylogeny, traits and ploidy on geographical ranges of Betula species

Author information +
History +
PDF

Abstract

Geographical range size is a fundamental ecological characteristic of a species, and the product of complex interactions of many factors in its history. Here, we investigate the causes of range size variation among 43 species of the woody plant genus Betula (birches), which each occupy areas of between one and 20 million square kilometers in the northern hemisphere. We find their distributions are more affected by temperature variables than by precipitation variables. The climatic niche breadth, median latitude, width of seed wings, degree of bark peeling, and ploidy of species all have significant impacts on range size variation, but number of leaf veins and life form do not. Many of these attributes, and range size itself, have a phylogenetic component and, once phylogeny is accounted for, ploidy no longer has a significant effect on range size, and climatic niche breadth is clearly the most important factor. Our results therefore support the niche-breadth hypothesis for range size variation and to a lesser extent also support the dispersal-ability hypothesis and Rapoport's rule that range size decreases toward the tropics. The climatic niche breadth of Betula species is likely to be a key attribute in their ability to avoid decline or extinction under climate change.

Keywords

birch / climatic niche breadth / geographical range / phylogenetic signals / polyploidy

Cite this article

Download citation ▾
Feifei Yan, Lu Liu, Junyi Ding, Kexin Fan, Richard J. A. Buggs, Nian Wang. Impacts of climatic niche breadth, phylogeny, traits and ploidy on geographical ranges of Betula species. Journal of Systematics and Evolution, 2025, 63(4): 939-951 DOI:10.1111/jse.13176

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alzate A, Onstein RE. 2022. Understanding the relationship between dispersal and range size. Ecology Letters 25: 2303-2323.

[2]

Amakawa T. 1981. Studies on the character of leaves for distinguishing tree-species in the field. 2. The venation of leaves of Dicotyledons. The Bulletin of Nakamura Gakuen University 14: 13-20.

[3]

Armstrong RA. 2014. When to use the Bonferroni correction. Ophthalmic and Physiological Optics 34: 502-508.

[4]

Ashburner K, McAllister H. 2013. The genus Betula: A taxonomic revision of birches. London: Kew Publishing.

[5]

Ávila-Lovera E, Winter K, Goldsmith GR. 2023. Evidence for phylogenetic signal and correlated evolution in plant-water relation traits. New Phytologist 237: 392-407.

[6]

Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. 2012. Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution 3: 327-338.

[7]

Barlow J, Lagan BO, Peres CA. 2003. Morphological correlates of fire-induced tree mortality in a central Amazonian forest. Journal of Tropical Ecology 19: 291-299.

[8]

Barton K2013. MuMIn: multi-model inference. R package version 1.43.17 [online]. Available from https://CRAN.R-project.org/package=MuMIn.

[9]

Bauer G, Speck T, Blömer J, Bertling J, Speck O. 2010. Insulation capability of the bark of trees with different fire adaptation. Journal of Materials Science 45: 5950-5959.

[10]

Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA. 2007. Correlated evolution of genome size and seed mass. New Phytologist 173: 422-437.

[11]

Bhattarai KR, Vetaas OR. 2006. Can Rapoport's rule explain tree species richness along the Himalayan elevation gradient, Nepal? Diversity and Distributions 12: 373-378.

[12]

Blomberg SP, Garland Jr., T, Ives AR. 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57: 717-745.

[13]

Blonder B, Violle C, Bentley LP, Enquist BJ. 2011. Venation networks and the origin of the leaf economics spectrum. Ecology Letters 14: 91-100.

[14]

Breiman L. 2001. Random forests. Machine Learning 45: 5-32.

[15]

Brittingham HA, Koski MH, Ashman TL. 2018. Higher ploidy is associated with reduced range breadth in the Potentilleae tribe. American Journal of Botany 105: 700-710.

[16]

Brown JH. 1984. On the relationship between abundance and distribution of species. The American Naturalist 124: 255-279.

[17]

Brown JH, Lomolino MV. 1998. Biogeography. Sinuer Associates Publishers.

[18]

Brown JH, Stevens GC, Kaufman DM. 1996. The geographic range: Size, shape, boundaries, and internal structure. Annual Review of Ecology, Evolution, and Systematics 27: 597-623.

[19]

Cabra-Rivas I, Alonso Á, Castro-Díez P. 2014. Does stream structure affect dispersal by water? A case study of the invasive tree Ailanthus altissima in Spain. Management of Biological Invasions 5: 179-186.

[20]

Cai Q, Welk E, Ji C, Fang W, Sabatini FM, Zhu J, et al. 2021. The relationship between niche breadth and range size of beech (Fagus) species worldwide. Journal of Biogeography 48: 1240-1253.

[21]

Chan W, Chen I, Colwell RK, Liu W, Huang C, Shen S. 2016. Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351: 1437-1439.

[22]

Chen K, Burgess KS, He FL, Yang XY, Gao LM, Li DZ. 2022. Seed traits and phylogeny explain plants′ geographic distribution. Biogeosciences 19: 4801-4810.

[23]

Chen SC, Cornwell WK, Zhang HX, Moles AT. 2017. Plants show more flesh in the tropics: Variation in fruit type along latitudinal and climatic gradients. Ecography 40: 531-538.

[24]

Coomes DA, Grubb PJ. 2003. Colonization, tolerance, competition and seed-size variation within functional groups. Trends in Ecology and Evolution 18: 283-291.

[25]

Coughlan J, Han S, Stefanović S, Dickinson T. 2017. Widespread generalist clones are associated with range and niche expansion in allopolyploids of Pacific Northwest Hawthorns (Crataegus L.). Molecular Ecology 26: 5484-5499.

[26]

Dauby G, Stévart T, Droissart V, Cosiaux A, Deblauwe V, Simo-Droissart M, Sosef MSM, Lowry II PP, Schatz GE, Gereau RE, Couvreur TLP. 2017. ConR: an R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecology and Evolution 7: 11292-11303.

[27]

Dullinger S, Willner W, Plutzar C, Englisch T, Schratt-Ehrendorfer L, Moser D, Ertl S, Essl F, Niklfeld H. 2012. Post-glacial migration lag restricts range filling of plants in the European Alps. Global Ecology and Biogeography 21: 829-840.

[28]

Estrada A, Meireles C, Morales-Castilla I, Poschlod P, Vieites D, Araújo MB, Early R. 2015. Species′ intrinsic traits inform their range limitations and vulnerability under environmental change. Global Ecology and Biogeography 24: 849-858.

[29]

Felsenstein J. 1985. Phylogenies and the comparative method. The American Naturalist 125: 1-15.

[30]

Gaston KJ. 1994. Measuring geographic range sizes. Ecography 17: 198-205.

[31]

Gaston KJ. 2003. The structure and dynamics of geographic ranges. Oxford: Oxford University Press.

[32]

Gaston KJ, Chown SL. 1999. Why Rapoport's rule does not generalise. Oikos 84: 309-312.

[33]

Gaston KJ, Fuller RA. 2009. The sizes of species′ geographic ranges. Journal of Applied Ecology 46: 1-9.

[34]

Geber MA, Griffen LR. 2003. Inheritance and natural selection on functional traits. International Journal of Plant Sciences 164: S21-S42.

[35]

Grant AG, Kalisz S. 2020. Do selfing species have greater niche breadth? Support from ecological niche modeling. Evolution 74: 73-88.

[36]

Grossenbacher D, Briscoe Runquist R, Goldberg EE, Brandvain Y. 2015. Geographic range size is predicted by plant mating system. Ecology Letters 18: 706-713.

[37]

Hanski I. 1993. Three explanations of the positive relationship between distribution and abundance of species. In: Ricklefs R, Schluter D eds. Historical and Geographical Determinants of Community Diversity. Chicago: University of Chicago Press. 108-116.

[38]

Harning DJ, Sacco S, Anamthawat-Jónsson K, Ardenghi N, Thordarson T, Raberg JH, Sepúlveda J, Geirsdóttir Á, Shapiro B, Miller GH. 2023. Delayed postglacial colonization of Betula in Iceland and the circum North Atlantic. eLife 12: RP87749.

[39]

Harvey PH, Pagel MD. 1991 The comparative method in evolutionary biology. Oxford: Oxford University Press.

[40]

Herrera CM. 2002. Seed dispersal by vertebrates. In: Herrera CM, Pellmyr O eds. Plant-Animal interactions: An evolutionary approach. New Jersey: Blackwell Publishing. 185-208.

[41]

Hijmans RJ, Gavrilenko T, Stephenson S, Bamberg J, Salas A, Spooner DM. 2007. Geographical and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). Global Ecology and Biogeography 16: 485-495.

[42]

Huang E, Chen Y, Fang M, Zheng Y, Yu S. 2021. Environmental drivers of plant distributions at global and regional scales. Global Ecology and Biogeography 30: 697-709.

[43]

Jara-Guerrero A, De la Cruz M, Méndez M. 2011. Seed dispersal spectrum of woody species in south Ecuadorian dry forests: Environmental correlates and the effect of considering species abundance. Biotropica 43: 722-730.

[44]

Johnson AL, Govindarajulu R, Ashman TL. 2014. Bioclimatic evaluation of geographical range in Fragaria (Rosaceae): Consequences of variation in breeding system, ploidy and species age. Botanical Journal of the Linnean Society 176: 99-114.

[45]

Jones KE, Sechrest W, Gittleman JL. 2005. Age and area revisited: identifying global patterns and implications for conservation. In: Purvis A, Gittleman JL, Brooks TM eds. Phylogeny and conservation. New York: Cambridge University Press. 141-165.

[46]

Junker RR, Kuppler J, Bathke AC, Schreyer ML, Trutschnig W. 2016. Dynamic range boxes-a robust nonparametric approach to quantify size and overlap of n-dimensional hypervolumes. Methods in Ecology and Evolution 7: 1503-1513.

[47]

Kelly CK, Woodward FI, Crawley MJ. 1996. Ecological correlates of plant range size: taxonomies and phylogenies in the study of plant commonness and rarity in Great Britain. Philosophical Transactions of the Royal Society of London 351: 1261-1269.

[48]

Kleerebezem M, Bachmann H, van Pelt-KleinJan E, Douwenga S, Smid EJ, Teusink B, van Mastrigt O. 2020. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiology Reviews 44: 804-820.

[49]

Latimer CE, Zuckerberg B. 2021. Habitat loss and thermal tolerances influence the sensitivity of resident bird populations to winter weather at regional scales. Journal of Animal Ecology 90: 317-329.

[50]

Leitch A, Leitch I. 2008. Genomic plasticity and the diversity of polyploid plants. Science 320: 481-483.

[51]

Levia D, Herwitz S. 2005. Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils. Catena 64: 117-137.

[52]

Levia DF, Wubbena NP. 2006. Vertical variation of bark water storage capacity of Pinus strobus L. (Eastern white pine) in southern Illinois. Northeastern Naturalist 13: 131-137.

[53]

Levin DA. 1983. Polyploidy and novelty in flowering plants. The American Naturalist 122: 1-25.

[54]

Lindquist B. 1947. On the variation in Scandinavian Betula verrucosa Ehrh. with some notes on the Betula series Verrucosae Sukacz. Svensk Botanisk Tidskrift 41: 45-80.

[55]

Lowry E, Lester S. 2006. The biogeography of plant reproduction: Potential determinants of species′ range sizes. Journal of Biogeography 33: 1975-1982.

[56]

Lynch M. 1991. Methods for the analysis of comparative data in evolutionary biology. Evolution 45: 1065-1080.

[57]

Martin SL, Husband BC. 2009. Influence of phylogeny and ploidy on species ranges of North American angiosperms. Journal of Ecology 97: 913-922.

[58]

Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP. 2011. Recently formed polyploid plants diversify at lower rates. Science 333: 1257.

[59]

Miles J. 2005. R-squared, adjusted R-squared. In: Everitt B, Howell D eds. Encyclopedia of statistics in behavioral science. Hoboken: Wiley. 2-4.

[60]

Miller BP, Enright NJ, Lamont BB. 2007. Record error and range contraction, real and imagined, in the restricted shrub Banksia hookeriana in south-western Australia. Diversity and Distributions 13: 406-417.

[61]

Morin X, Lechowicz MJ. 2013. Niche breadth and range area in North American trees. Ecography 36: 300-312.

[62]

Nocchi G, Wang J, Yang L, Ding J, Gao Y, Buggs RJA, Wang N. 2023. Genomic signals of local adaptation and hybridization in Asian white birch. Molecular Ecology 32: 595-612.

[63]

Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, et al. 2013. The caper package: Comparative analysis of phylogenetics and evolution in R. R package version 1.0.1 [online]. Available from https://cran.r-project.org/package=caper.

[64]

Outomuro D, Johansson F. 2019. Wing morphology and migration status, but not body size, habitat or Rapoport's rule predict range size in North-American dragonflies (Odonata: Libellulidae). Ecography 42: 309-320.

[65]

Paul JR, Morton C, Taylor CM, Tonsor SJ. 2009. Evolutionary time for dispersal limits the extent but not the occupancy of species′ potential ranges in the tropical plant genus Psychotria (Rubiaceae). The American Naturalist 173: 188-199.

[66]

Peat H, Fitter A. 1994. Comparative analyses of ecological characteristics of British angiosperms. Biological Reviews 69: 95-115.

[67]

Pie MR, Divieso R, Caron FS, Siqueira AC, Barneche DR, Luiz OJ. 2021. The evolution of latitudinal ranges in reef-associated fishes: Heritability, limits and inverse Rapoport's rule. Journal of Biogeography 48: 2121-2132.

[68]

Pinard MA, Huffman J. 1997. Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia. Journal of Tropical Ecology 13: 727-740.

[69]

Pintor AF, Schwarzkopf L, Krockenberger AK. 2015. Rapoport's rule: Do climatic variability gradients shape range extent? Ecological Monographs 85: 643-659.

[70]

R Core Team. 2021. R: A language and environment for statistical computing. R version 4.1.1 [online]. Available from https://www.R-project.org/.

[71]

Ræbild A, Anamthawat-Jónsson K, Egertsdotter U, Immanen J, Jensen AM, Koutouleas A, Martens HJ, Nieminen K, Olofsson JK, Röper AC. 2024. Polyploidy-A tool in adapting trees to future climate changes? A review of polyploidy in trees. Forest Ecology and Management 560: 121767.

[72]

Ren Y, Huang C, Zhang J, Ma Y, Tian X. 2021. Dispersal and germination of winged seeds of Brandisia hancei, a shrub in karst regions of China. Plant Diversity 43: 234-238.

[73]

Revell LJ. 2012. Phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217-223.

[74]

Revell LJ, Harmon LJ, Collar DC. 2008. Phylogenetic signal, evolutionary process, and rate. Systematic Biology 57: 591-601.

[75]

Rohde K. 1996. Rapoport's rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodiversity Letters 3: 10-13.

[76]

Rundle SD, Bilton DT, Abbott JC, Foggo A. 2007. Range size in North American Enallagma damselflies correlates with wing size. Freshwater Biology 52: 471-477.

[77]

Salojärvi J, Smolander O-P, Nieminen K, Rajaraman S, Safronov O, Safdari P, Lamminmäki A, Immanen J, Lan T, Tanskanen J, Rastas P, Amiryousefi A, Jayaprakash B, Kammonen JI, Hagqvist R, Eswaran G, Ahonen VH, Serra JA, Asiegbu FO, de Dios Barajas-Lopez J, Blande D, Blokhina O, Blomster T, Broholm S, Brosché M, Cui F, Dardick C, Ehonen SE, Elomaa P, Escamez S, Fagerstedt KV, Fujii H, Gauthier A, Gollan PJ, Halimaa P, Heino PI, Himanen K, Hollender C, Kangasjärvi S, Kauppinen L, Kelleher CT, Kontunen-Soppela S, Koskinen JP, Kovalchuk A, Kärenlampi SO, Kärkönen AK, Lim K-J, Leppälä J, Macpherson L, Mikola J, Mouhu K, Mähönen AP, Niinemets Ü, Oksanen E, Overmyer K, Palva ET, Pazouki L, Pennanen V, Puhakainen T, Poczai P, Possen BJHM, Punkkinen M, Rahikainen MM, Rousi M, Ruonala R, van der Schoot C, Shapiguzov A, Sierla M, Sipilä TP, Sutela S, Teeri TH, Tervahauta AI, Vaattovaara A, Vahala J, Vetchinnikova L, Welling A, Wrzaczek M, Xu E, Paulin LG, Schulman AH, Lascoux M, Albert VA, Auvinen P, Helariutta Y, Kangasjärvi J. 2017. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics 49: 904-912.

[78]

Säumel I, Kowarik I. 2010. Urban rivers as dispersal corridors for primarily wind-dispersed invasive tree species. Landscape and Urban Planning 94: 244-249.

[79]

Sheth SN, Jiménez I, Angert AL. 2014. Identifying the paths leading to variation in geographical range size in western North American monkeyflowers. Journal of Biogeography 41: 2344-2356.

[80]

Sheth SN, Morueta-Holme N, Angert AL. 2020. Determinants of geographic range size in plants. New Phytologist 226: 650-665.

[81]

Sheth SN, Lohmann LG, Consiglio T, Jiménez I. 2008. Effects of detectability on estimates of geographic range size in Bignonieae. Conservation Biology 22: 200-211.

[82]

Silvertown J, McConway K, Gowing D, Dodd M, Fay MF, Joseph JA, et al. 2006. Absence of phylogenetic signal in the niche structure of meadow plant communities. Proceedings of the Royal Society B: Biological Sciences 273: 39-44.

[83]

Simberloff D, Rapoport EH, Drausal B. 1983. Areography: Geographical strategies of species. Journal of Biogeography 10: 161-162.

[84]

Slatyer RA, Hirst M, Sexton JP. 2013. Niche breadth predicts geographical range size: A general ecological pattern. Ecology Letters 16: 1104-1114.

[85]

Sonkoly J, Deák B, Valkó O, Molnár VA, Tóthmérész B, Török P. 2017. Do large-seeded herbs have a small range size? The seed mass-distribution range trade-off hypothesis. Ecology and Evolution 7: 11204-11212.

[86]

Soons MB, Heil GW, Nathan R, Katul GG. 2004. Determinants of long-distance seed dispersal by wind in grasslands. Ecology 85: 3056-3068.

[87]

Sporbert M, Bruelheide H, Seidler G, Keil P, Jandt U, Austrheim G, et al. 2019. Assessing sampling coverage of species distribution in biodiversity databases. Journal of Vegetation Science 30: 620-632.

[88]

Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.

[89]

Standards and Petitions Working Group. 2006. Guidelines for using the IUCN Red List categories and criteria, Version 6.2. International Union for Conservation of Nature.

[90]

Stevens GC. 1989. The latitudinal gradient in geographical range: How so many species coexist in the tropics. The American Naturalist 133: 240-256.

[91]

Svendsen K. 2020. The effects that the current climate crisis have on the biogeography and environment, needed adaptations and conservation. American Journal of BioScience 8: 20-27.

[92]

Svenning JC, Skov F. 2004. Limited filling of the potential range in European tree species. Ecology Letters 7: 565-573.

[93]

Swenson NG. 2014. Functional and phylogenetic ecology in R. Springer.

[94]

Tomašových A, Jablonski D. 2017. Decoupling of latitudinal gradients in species and genus geographic range size: A signature of clade range expansion. Global Ecology and Biogeography 26: 288-303.

[95]

Tsuda Y, Semerikov V, Sebastiani F, Vendramin GG, Lascoux M. 2017. Multispecies genetic structure and hybridization in the Betula genus across Eurasia. Molecular Ecology 26: 589-605.

[96]

Válová M, Bieleszová S. 2008. Interspecific variations of bark's water storage capacity of chosen types of trees and the dependance on occurance of epiphytic mosses. Catena 64: 117-137.

[97]

Van der Veken S, Bellemare J, Verheyen K, Hermy M. 2007. Life-history traits are correlated with geographical distribution patterns of western European forest herb species. Journal of Biogeography 34: 1723-1735.

[98]

Vargas P, Heleno R, Traveset A, Nogales M. 2012. Colonization of the Galápagos Islands by plants with no specific syndromes for long-distance dispersal: A new perspective. Ecography 35: 33-43.

[99]

Varzinczak LH, Moura MO, Passos FC. 2020. Strong but opposing effects of climatic niche breadth and dispersal ability shape bat geographical range sizes across phylogenetic scales. Global Ecology and Biogeography 29: 1929-1939.

[100]

Wang L, Ding J, Borrell JS, Cheek M, McAllister HA, Wang F, et al. 2022. Molecular and morphological analyses clarify species delimitation in section Costatae and reveal Betula buggsii sp. nov. (sect. Costatae, Betulaceae) in China. Annals of Botany 129: 415-428.

[101]

Wang N, McAllister HA, Bartlett PR, Buggs RJA. 2016. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae). Annals of Botany 117: 1023-1035.

[102]

Wang N, Kelly LJ, McAllister HA, Zohren J, Buggs RJA. 2021. Resolving phylogeny and polyploid parentage using genus-wide genome-wide sequence data from birch trees. Molecular Phylogenetics and Evolution 160: 107126.

[103]

Webb TJ, Gaston KJ. 2003. On the heritability of geographic range sizes. The American Naturalist 161: 553-566.

[104]

Western TL. 2012. The sticky tale of seed coat mucilages: Production, genetics, and role in seed germination and dispersal. Seed Science Research 22: 1-25.

[105]

Willis F, Moat J, Paton A. 2003. Defining a role for herbarium data in Red List assessments: A case study of Plectranthus from eastern and southern tropical Africa. Biodiversity and Conservation 12: 1537-1552.

[106]

Xiong YC, Li FM, Zhang T. 2006. Performance of wheat crops with different chromosome ploidy: Root-sourced signals, drought tolerance, and yield performance. Planta 224: 710-718.

[107]

Xu H, Blonder B, Jodra M, Malhi Y, Fricker M. 2021. Automated and accurate segmentation of leaf venation networks via deep learning. New Phytologist 229: 631-648.

[108]

Zhang C, Nielsen R, Mirarab S. 2025. CASTER: direct species tree inference from whole-genome alignments. Science. https://doi.org/10.1126/science.adk9688

[109]

Zhang H, Ding J, Holstein N, Wang N. 2023. Betula mcallisteri sp. nov. (sect. Acuminatae, Betulaceae), a new diploid species overlooked in the wild and in cultivation, and its relation to the widespread B. luminifera. Frontiers in Plant Science 14: 1113274.

RIGHTS & PERMISSIONS

2025 The Author(s). Journal of Systematics and Evolution published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

34

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/